Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
EMBO Rep ; 22(5): e51851, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33932076

RESUMEN

Defects in DNA single-strand break repair (SSBR) are linked with neurological dysfunction but the underlying mechanisms remain poorly understood. Here, we show that hyperactivity of the DNA strand break sensor protein Parp1 in mice in which the central SSBR protein Xrcc1 is conditionally deleted (Xrcc1Nes-Cre ) results in lethal seizures and shortened lifespan. Using electrophysiological recording and synaptic imaging approaches, we demonstrate that aberrant Parp1 activation triggers seizure-like activity in Xrcc1-defective hippocampus ex vivo and deregulated presynaptic calcium signalling in isolated hippocampal neurons in vitro. Moreover, we show that these defects are prevented by Parp1 inhibition or deletion and, in the case of Parp1 deletion, that the lifespan of Xrcc1Nes-Cre mice is greatly extended. This is the first demonstration that lethal seizures can be triggered by aberrant Parp1 activity at unrepaired SSBs, highlighting PARP inhibition as a possible therapeutic approach in hereditary neurological disease.


Asunto(s)
Calcio , Proteínas de Unión al ADN , Animales , ADN , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ratones , Neuronas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Convulsiones/genética
2.
Nature ; 541(7635): 87-91, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28002403

RESUMEN

XRCC1 is a molecular scaffold protein that assembles multi-protein complexes involved in DNA single-strand break repair. Here we show that biallelic mutations in the human XRCC1 gene are associated with ocular motor apraxia, axonal neuropathy, and progressive cerebellar ataxia. Cells from a patient with mutations in XRCC1 exhibited not only reduced rates of single-strand break repair but also elevated levels of protein ADP-ribosylation. This latter phenotype is recapitulated in a related syndrome caused by mutations in the XRCC1 partner protein PNKP and implicates hyperactivation of poly(ADP-ribose) polymerase/s as a cause of cerebellar ataxia. Indeed, remarkably, genetic deletion of Parp1 rescued normal cerebellar ADP-ribose levels and reduced the loss of cerebellar neurons and ataxia in Xrcc1-defective mice, identifying a molecular mechanism by which endogenous single-strand breaks trigger neuropathology. Collectively, these data establish the importance of XRCC1 protein complexes for normal neurological function and identify PARP1 as a therapeutic target in DNA strand break repair-defective disease.


Asunto(s)
Ataxia Cerebelosa/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Alelos , Animales , Apraxias/congénito , Apraxias/genética , Ataxia/genética , Axones/patología , Ataxia Cerebelosa/patología , Cerebelo/metabolismo , Cerebelo/patología , Cromatina/metabolismo , Síndrome de Cogan/genética , Roturas del ADN de Cadena Simple , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/deficiencia , Femenino , Humanos , Interneuronas/metabolismo , Interneuronas/patología , Masculino , Ratones , Linaje , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/deficiencia , Poli(ADP-Ribosa) Polimerasa-1/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
3.
Biochem J ; 473(13): 1869-79, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27099339

RESUMEN

Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a 5'-tyrosyl DNA phosphodiesterase important for the repair of DNA adducts generated by non-productive (abortive) activity of topoisomerase II (TOP2). TDP2 facilitates therapeutic resistance to topoisomerase poisons, which are widely used in the treatment of a range of cancer types. Consequently, TDP2 is an interesting target for the development of small molecule inhibitors that could restore sensitivity to topoisomerase-directed therapies. Previous studies identified a class of deazaflavin-based molecules that showed inhibitory activity against TDP2 at therapeutically useful concentrations, but their mode of action was uncertain. We have confirmed that the deazaflavin series inhibits TDP2 enzyme activity in a fluorescence-based assay, suitable for high-throughput screen (HTS)-screening. We have gone on to determine crystal structures of these compounds bound to a 'humanized' form of murine TDP2. The structures reveal their novel mode of action as competitive ligands for the binding site of an incoming DNA substrate, and point the way to generating novel and potent inhibitors of TDP2.


Asunto(s)
Hidrolasas Diéster Fosfóricas/metabolismo , Riboflavina/química , Animales , Sitios de Unión , Cristalografía por Rayos X , Activación Enzimática/efectos de los fármacos , Humanos , Ratones , Hidrolasas Diéster Fosfóricas/química , Unión Proteica , Desnaturalización Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Riboflavina/análogos & derivados , Riboflavina/farmacología , Temperatura
4.
Nat Cell Biol ; 23(12): 1287-1298, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34811483

RESUMEN

Genetic defects in the repair of DNA single-strand breaks (SSBs) can result in neurological disease triggered by toxic activity of the single-strand-break sensor protein PARP1. However, the mechanism(s) by which this toxic PARP1 activity triggers cellular dysfunction are unclear. Here we show that human cells lacking XRCC1 fail to rapidly recover transcription following DNA base damage, a phenotype also observed in patient-derived fibroblasts with XRCC1 mutations and Xrcc1-/- mouse neurons. This defect is caused by excessive/aberrant PARP1 activity during DNA base excision repair, resulting from the loss of PARP1 regulation by XRCC1. We show that aberrant PARP1 activity suppresses transcriptional recovery during base excision repair by promoting excessive recruitment and activity of the ubiquitin protease USP3, which as a result reduces the level of monoubiquitinated histones important for normal transcriptional regulation. Importantly, inhibition and/or deletion of PARP1 or USP3 restores transcriptional recovery in XRCC1-/- cells, highlighting PARP1 and USP3 as possible therapeutic targets in neurological disease.


Asunto(s)
Roturas del ADN de Cadena Simple , Reparación del ADN/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Transcripción Genética/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Animales , Línea Celular Tumoral , ADN/genética , Histonas/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Ratones , Ratones Noqueados , Estrés Oxidativo/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Ubiquitinación/fisiología , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética
5.
Cells ; 9(2)2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32074971

RESUMEN

The protein kinase JNK1 exhibits high activity in the developing brain, where it regulates dendrite morphology through the phosphorylation of cytoskeletal regulatory proteins. JNK1 also phosphorylates dendritic spine proteins, and Jnk1-/- mice display a long-term depression deficit. Whether JNK1 or other JNKs regulate spine morphology is thus of interest. Here, we characterize dendritic spine morphology in hippocampus of mice lacking Jnk1-/- using Lucifer yellow labelling. We find that mushroom spines decrease and thin spines increase in apical dendrites of CA3 pyramidal neurons with no spine changes in basal dendrites or in CA1. Consistent with this spine deficit, Jnk1-/- mice display impaired acquisition learning in the Morris water maze. In hippocampal cultures, we show that cytosolic but not nuclear JNK, regulates spine morphology and expression of phosphomimicry variants of JNK substrates doublecortin (DCX) or myristoylated alanine-rich C kinase substrate-like protein-1 (MARCKSL1), rescue mushroom, thin, and stubby spines differentially. These data suggest that physiologically active JNK controls the equilibrium between mushroom, thin, and stubby spines via phosphorylation of distinct substrates.


Asunto(s)
Espinas Dendríticas/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Proteína Doblecortina , Humanos , Ratones , Prueba del Laberinto Acuático de Morris , Transfección
6.
ACS Chem Biol ; 14(6): 1110-1114, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31091068

RESUMEN

Tyrosyl DNA phosphodiesterase 2 (TDP2) facilitates the repair of topoisomerase II (TOP2)-linked DNA double-strand breaks and, as a consequence, is required for cellular resistance to TOP2 "poisons". Recently, a deazaflavin series of compounds were identified as potent inhibitors of TDP2, in vitro. Here, however, we show that while some deazaflavins can induce cellular sensitivity to the TOP2 poison etoposide, they do so independently of TDP2 status. Consistent with this, both the cellular level of etoposide-induced TOP2 cleavage complexes and the intracellular concentration of etoposide was increased by incubation with deazaflavin, suggesting an impact of these compounds on etoposide uptake/efflux. In addition, deazaflavin failed to increase the level of TOP2 cleavage complexes or sensitivity induced by m-AMSA, which is a different class of TOP2 poison to which TDP2-defective cells are also sensitive. In conclusion, while deazaflavins are potent inhibitors of TDP2 in vitro, their limited cell permeability and likely interference with etoposide influx/efflux limits their utility in cells.


Asunto(s)
Compuestos Aza/química , Proteínas de Unión al ADN/antagonistas & inhibidores , Etopósido/farmacocinética , Flavinas/farmacología , Inhibidores de Topoisomerasa II/farmacocinética , Animales , Transporte Biológico , Línea Celular , Pollos , Flavinas/química , Flavinas/farmacocinética , Humanos , Hidrolasas Diéster Fosfóricas , Bibliotecas de Moléculas Pequeñas/farmacología
7.
Front Cell Neurosci ; 8: 272, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25309320

RESUMEN

Genetic anomalies on the JNK pathway confer susceptibility to autism spectrum disorders, schizophrenia, and intellectual disability. The mechanism whereby a gain or loss of function in JNK signaling predisposes to these prevalent dendrite disorders, with associated motor dysfunction, remains unclear. Here we find that JNK1 regulates the dendritic field of L2/3 and L5 pyramidal neurons of the mouse motor cortex (M1), the main excitatory pathway controlling voluntary movement. In Jnk1-/- mice, basal dendrite branching of L5 pyramidal neurons is increased in M1, as is cell soma size, whereas in L2/3, dendritic arborization is decreased. We show that JNK1 phosphorylates rat HMW-MAP2 on T1619, T1622, and T1625 (Uniprot P15146) corresponding to mouse T1617, T1620, T1623, to create a binding motif, that is critical for MAP2 interaction with and stabilization of microtubules, and dendrite growth control. Targeted expression in M1 of GFP-HMW-MAP2 that is pseudo-phosphorylated on T1619, T1622, and T1625 increases dendrite complexity in L2/3 indicating that JNK1 phosphorylation of HMW-MAP2 regulates the dendritic field. Consistent with the morphological changes observed in L2/3 and L5, Jnk1-/- mice exhibit deficits in limb placement and motor coordination, while stride length is reduced in older animals. In summary, JNK1 phosphorylates HMW-MAP2 to increase its stabilization of microtubules while at the same time controlling dendritic fields in the main excitatory pathway of M1. Moreover, JNK1 contributes to normal functioning of fine motor coordination. We report for the first time, a quantitative Sholl analysis of dendrite architecture, and of motor behavior in Jnk1-/- mice. Our results illustrate the molecular and behavioral consequences of interrupted JNK1 signaling and provide new ground for mechanistic understanding of those prevalent neuropyschiatric disorders where genetic disruption of the JNK pathway is central.

8.
Mol Cell Biol ; 32(17): 3513-26, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22751924

RESUMEN

Cell migration is a fundamental biological function, critical during development and regeneration, whereas deregulated migration underlies neurological birth defects and cancer metastasis. MARCKS-like protein 1 (MARCKSL1) is widely expressed in nervous tissue, where, like Jun N-terminal protein kinase (JNK), it is required for neural tube formation, though the mechanism is unknown. Here we show that MARCKSL1 is directly phosphorylated by JNK on C-terminal residues (S120, T148, and T183). This phosphorylation enables MARCKSL1 to bundle and stabilize F-actin, increase filopodium numbers and dynamics, and retard migration in neurons. Conversely, when MARCKSL1 phosphorylation is inhibited, actin mobility increases and filopodium formation is compromised whereas lamellipodium formation is enhanced, as is cell migration. We find that MARCKSL1 mRNA is upregulated in a broad range of cancer types and that MARCKSL1 protein is strongly induced in primary prostate carcinomas. Gene knockdown in prostate cancer cells or in neurons reveals a critical role for MARCKSL1 in migration that is dependent on the phosphorylation state; phosphomimetic MARCKSL1 (MARCKSL1(S120D,T148D,T183D)) inhibits whereas dephospho-MARCKSL1(S120A,T148A,T183A) induces migration. In summary, these data show that JNK phosphorylation of MARCKSL1 regulates actin homeostasis, filopodium and lamellipodium formation, and neuronal migration under physiological conditions and that, when ectopically expressed in prostate cancer cells, MARCKSL1 again determines cell movement.


Asunto(s)
Actinas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Proteínas de Unión a Calmodulina , Línea Celular , Línea Celular Tumoral , Movimiento Celular , Células Cultivadas , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Proteínas de Microfilamentos , Mutación , Fosforilación , Neoplasias de la Próstata/genética , Ratas , Ratas Sprague-Dawley , Proteínas de Transporte Vesicular/genética
9.
Nat Neurosci ; 14(3): 305-13, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21297631

RESUMEN

Cell migration is the consequence of the sum of positive and negative regulatory mechanisms. Although appropriate migration of neurons is a principal feature of brain development, the negative regulatory mechanisms remain obscure. We found that JNK1 was highly active in developing cortex and that selective inhibition of JNK in the cytoplasm markedly increased both the frequency of exit from the multipolar stage and radial migration rate and ultimately led to an ill-defined cellular organization. Moreover, regulation of multipolar-stage exit and radial migration in Jnk1(-/-) (also known as Mapk8) mice, resulted from consequential changes in phosphorylation of the microtubule regulator SCG10 (also called stathmin-2). Expression of an SCG10 mutant that mimics the JNK1-phosphorylated form restored normal migration in the brains of Jnk1(-/-) mouse embryos. These findings indicate that the phosphorylation of SCG10 by JNK1 is a fundamental mechanism that governs the transition from the multipolar stage and the rate of neuronal cell movement during cortical development.


Asunto(s)
Movimiento Celular/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/fisiología , Animales , Proteínas de Unión al Calcio , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Proteína Quinasa 8 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Estatmina , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA