Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Plant J ; 100(2): 411-429, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31276249

RESUMEN

To accelerate the isolation of plant protein complexes and study cellular localization and interaction of their components, an improved recombineering protocol is described for simple and fast site-directed modification of plant genes in bacterial artificial chromosomes (BACs). Coding sequences of fluorescent and affinity tags were inserted into genes and transferred together with flanking genomic sequences of desired size by recombination into Agrobacterium plant transformation vectors using three steps of E. coli transformation with PCR-amplified DNA fragments. Application of fast-track recombineering is illustrated by the simultaneous labelling of CYCLIN-DEPENDENT KINASE D (CDKD) and CYCLIN H (CYCH) subunits of kinase module of TFIIH general transcription factor and the CDKD-activating CDKF;1 kinase with green fluorescent protein (GFP) and mCherry (green and red fluorescent protein) tags, and a PIPL (His18 -StrepII-HA) epitope. Functionality of modified CDKF;1 gene constructs is verified by complementation of corresponding T-DNA insertion mutation. Interaction of CYCH with all three known CDKD homologues is confirmed by their co-localization and co-immunoprecipitation. Affinity purification and mass spectrometry analyses of CDKD;2, CYCH, and DNA-replication-coupled HISTONE H3.1 validate their association with conserved TFIIH subunits and components of CHROMATIN ASSEMBLY FACTOR 1, respectively. The results document that simple modification of plant gene products with suitable tags by fast-track recombineering is well suited to promote a wide range of protein interaction and proteomics studies.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ingeniería Genética/métodos , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromosomas Artificiales Bacterianos/genética , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes , Histonas/genética , Histonas/metabolismo , Proteínas Luminiscentes , Mutagénesis Insercional , Plantas Modificadas Genéticamente , Recombinación Genética , Proteína Fluorescente Roja
2.
EMBO J ; 35(19): 2068-2086, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27497297

RESUMEN

Upon DNA damage, cyclin-dependent kinases (CDKs) are typically inhibited to block cell division. In many organisms, however, it has been found that CDK activity is required for DNA repair, especially for homology-dependent repair (HR), resulting in the conundrum how mitotic arrest and repair can be reconciled. Here, we show that Arabidopsis thaliana solves this dilemma by a division of labor strategy. We identify the plant-specific B1-type CDKs (CDKB1s) and the class of B1-type cyclins (CYCB1s) as major regulators of HR in plants. We find that RADIATION SENSITIVE 51 (RAD51), a core mediator of HR, is a substrate of CDKB1-CYCB1 complexes. Conversely, mutants in CDKB1 and CYCB1 fail to recruit RAD51 to damaged DNA CYCB1;1 is specifically activated after DNA damage and we show that this activation is directly controlled by SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a transcription factor that acts similarly to p53 in animals. Thus, while the major mitotic cell-cycle activity is blocked after DNA damage, CDKB1-CYCB1 complexes are specifically activated to mediate HR.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ciclina B/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Reparación del ADN por Recombinación , Proteínas de Arabidopsis/genética , Ciclina B/genética , Quinasas Ciclina-Dependientes/genética , Recombinasa Rad51/metabolismo , Factores de Transcripción/metabolismo
3.
Int J Mol Sci ; 21(3)2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31979421

RESUMEN

SWI/SNF ATP-dependent chromatin remodeling complexes (CRCs) play important roles in the regulation of transcription, cell cycle, DNA replication, repair, and hormone signaling in eukaryotes. The core of SWI/SNF CRCs composed of a SWI2/SNF2 type ATPase, a SNF5 and two of SWI3 subunits is sufficient for execution of nucleosome remodeling in vitro. The Arabidopsis genome encodes four SWI2/SNF2 ATPases, four SWI3, a single SNF5 and two SWP73 subunits. Genes of the core SWI/SNF components have critical but not fully overlapping roles during plant growth, embryogenesis, and sporophyte development. Here we show that the Arabidopsis swi3c mutant exhibits a phenotypic reversion when grown at lower temperature resulting in partial restoration of its embryo, root development and fertility defects. Our data indicates that the swi3c mutation alters the expression of several genes engaged in low temperature responses. The location of SWI3C-containing SWI/SNF CRCs on the ICE1, MYB15 and CBF1 target genes depends on the temperature conditions, and the swi3c mutation thus also influences the transcription of several cold-responsive (COR) genes. These findings, together with genetic analysis of swi3c/ice1 double mutant and enhanced freezing tolerance of swi3c plants illustrate that SWI/SNF CRCs contribute to fine-tuning of plant growth responses to different temperature regimes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Regiones no Traducidas 5' , Adaptación Fisiológica/genética , Arabidopsis/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Frío , Regulación de la Expresión Génica de las Plantas/genética , Mutación , Nucleosomas/genética , Fenotipo , Plantas Modificadas Genéticamente , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Plant Physiol ; 173(3): 1750-1762, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28167701

RESUMEN

Plants modify organ growth and tune morphogenesis in response to various endogenous and environmental cues. At the cellular level, organ growth is often adjusted by alterations in cell growth, but the molecular mechanisms underlying this control remain poorly understood. In this study, we identify the DNA BINDING WITH ONE FINGER (DOF)-type transcription regulator OBF BINDING PROTEIN4 (OBP4) as a repressor of cell growth. Ectopic expression of OBP4 in Arabidopsis (Arabidopsis thaliana) inhibits cell growth, resulting in severe dwarfism and the repression of genes involved in the regulation of water transport, root hair development, and stress responses. Among the basic helix-loop-helix transcription factors known to control root hair growth, OBP4 binds the ROOT HAIR DEFECTIVE6-LIKE2 (RSL2) promoter to repress its expression. The accumulation of OBP4 proteins is detected in expanding root epidermal cells, and its expression level is increased by the application of abscisic acid (ABA) at concentrations sufficient to inhibit root hair growth. ABA-dependent induction of OBP4 is associated with the reduced expression of RSL2 Furthermore, ectopic expression of OBP4 or loss of RSL2 function results in ABA-insensitive root hair growth. Taken together, our results suggest that OBP4-mediated transcriptional repression of RSL2 contributes to the ABA-dependent inhibition of root hair growth in Arabidopsis.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Raíces de Plantas/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Microscopía Confocal , Mutación , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Plant Cell ; 27(7): 1889-906, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26106148

RESUMEN

Arabidopsis thaliana SWP73A and SWP73B are homologs of mammalian BRAHMA-associated factors (BAF60s) that tether SWITCH/SUCROSE NONFERMENTING chromatin remodeling complexes to transcription factors of genes regulating various cell differentiation pathways. Here, we show that Arabidopsis thaliana SWP73s modulate several important developmental pathways. While undergoing normal vegetative development, swp73a mutants display reduced expression of FLOWERING LOCUS C and early flowering in short days. By contrast, swp73b mutants are characterized by retarded growth, severe defects in leaf and flower development, delayed flowering, and male sterility. MNase-Seq, transcript profiling, and ChIP-Seq studies demonstrate that SWP73B binds the promoters of ASYMMETRIC LEAVES1 and 2, KANADI1 and 3, and YABBY2, 3, and 5 genes, which regulate leaf development and show coordinately altered transcription in swp73b plants. Lack of SWP73B alters the expression patterns of APETALA1, APETALA3, and the MADS box gene AGL24, whereas other floral organ identity genes show reduced expression correlating with defects in flower development. Consistently, SWP73B binds to the promoter regions of APETALA1 and 3, SEPALLATA3, LEAFY, UNUSUAL FLORAL ORGANS, TERMINAL FLOWER1, AGAMOUS-LIKE24, and SUPPRESSOR OF CONSTANS OVEREXPRESSION1 genes, and the swp73b mutation alters nucleosome occupancy on most of these loci. In conclusion, SWP73B acts as important modulator of major developmental pathways, while SWP73A functions in flowering time control.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Subunidades de Proteína/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/embriología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Inmunoprecipitación de Cromatina , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Nucleasa Microcócica/metabolismo , Mutagénesis Insercional/genética , Mutación/genética , Nucleosomas/metabolismo , Hojas de la Planta/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Subunidades de Proteína/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Técnicas del Sistema de Dos Híbridos
6.
Plant Cell Environ ; 40(7): 997-1008, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28054361

RESUMEN

Plants generate rhythmic metabolism during the repetitive day/night cycle. The circadian clock produces internal biological rhythms to synchronize numerous metabolic processes such that they occur at the required time of day. Metabolism conversely influences clock function by controlling circadian period and phase and the expression of core-clock genes. Here, we show that AKIN10, a catalytic subunit of the evolutionarily conserved key energy sensor sucrose non-fermenting 1 (Snf1)-related kinase 1 (SnRK1) complex, plays an important role in the circadian clock. Elevated AKIN10 expression led to delayed peak expression of the circadian clock evening-element GIGANTEA (GI) under diurnal conditions. Moreover, it lengthened clock period specifically under light conditions. Genetic analysis showed that the clock regulator TIME FOR COFFEE (TIC) is required for this effect of AKIN10. Taken together, we propose that AKIN10 conditionally works in a circadian clock input pathway to the circadian oscillator.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Relojes Circadianos/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Luz , Mutación , Proteínas Nucleares/genética , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética
7.
Plant J ; 81(3): 399-412, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25438658

RESUMEN

The stem cell niche in the root meristem maintains pluripotent stem cells to ensure a constant supply of cells for root growth. Despite extensive progress, the molecular mechanisms through which root stem cell fates and stem cell niche activity are determined remain largely unknown. In Arabidopsis thaliana, the Pleiotropic Regulatory Locus 1 (PRL1) encodes a WD40-repeat protein subunit of the spliceosome-activating Nineteen Complex (NTC) that plays a role in multiple stress, hormone and developmental signaling pathways. Here, we show that PRL1 is involved in the control of root meristem size and root stem cell niche activity. PRL1 is strongly expressed in the root meristem and its loss of function mutation results in disorganization of the quiescent center (QC), premature stem cell differentiation, aberrant cell division, and reduced root meristem size. Our genetic studies indicate that PRL1 is required for confined expression of the homeodomain transcription factor WOX5 in the QC and acts upstream of the transcription factor PLETHORA (PLT) in modulating stem cell niche activity and root meristem size. These findings define a role for PRL1 as an important determinant of PLT signaling that modulates maintenance of the stem cell niche and root meristem size.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Proteínas Portadoras/fisiología , Proteínas de Homeodominio/fisiología , Meristema/genética , Proteínas Nucleares/fisiología , Arabidopsis/citología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Puntos de Control del Ciclo Celular , Diferenciación Celular/genética , División Celular/genética , Proteínas de Homeodominio/metabolismo , Meristema/citología , Meristema/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal , Nicho de Células Madre/genética
8.
Plant J ; 82(5): 772-84, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25847219

RESUMEN

The ethylene response factor VII (ERF-VII) transcription factor RELATED TO APETALA2.12 (RAP2.12) was previously identified as an activator of the ALCOHOL DEHYDROGENASE1 promoter::luciferase (ADH1-LUC) reporter gene. Here we show that overexpression of RAP2.12 and its homologues RAP2.2 and RAP2.3 sustains ABA-mediated activation of ADH1 and activates hypoxia marker genes under both anoxic and normoxic conditions. Inducible expression of all three RAP2s conferred tolerance to anoxia, oxidative and osmotic stresses, and enhanced the sensitivity to abscisic acid (ABA). Consistently, the rap2.12-2 rap2.3-1 double mutant showed hypersensitivity to both submergence and osmotic stress. These findings suggest that the three ERF-VII-type transcription factors play roles in tolerance to multiple stresses that sequentially occur during and after submergence in Arabidopsis. Oxygen-dependent degradation of RAP2.12 was previously shown to be mediated by the N-end rule pathway. During submergence the RAP2.12, RAP2.2 and RAP2.3 are stabilized and accumulates in the nucleus affecting the transcription of stress response genes. We conclude that the stabilized RAP2 transcription factors can prolong the ABA-mediated activation of a subset of osmotic responsive genes (e.g. ADH1). We also show that RAP2.12 protein level is affected by the REALLY INTERESTING GENE (RING) domain containing SEVEN IN ABSENTIA of Arabidopsis thaliana 2 (SINAT2). Silencing of SINAT1/2 genes leads to enhanced RAP2.12 abundance independently of the presence or absence of its N-terminal degron. Taken together, our results suggest that RAP2.12 and its homologues RAP2.2 and RAP2.3 act redundantly in multiple stress responses. Alternative protein degradation pathways may provide inputs to the RAP2 transcription factors for the distinct stresses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Estrés Oxidativo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Aclimatación , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Presión Osmótica , Oxígeno/metabolismo , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
Plant Cell ; 25(5): 1592-608, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23673979

RESUMEN

CRK5 is a member of the Arabidopsis thaliana Ca(2+)/calmodulin-dependent kinase-related kinase family. Here, we show that inactivation of CRK5 inhibits primary root elongation and delays gravitropic bending of shoots and roots. Reduced activity of the auxin-induced DR5-green fluorescent protein reporter suggests that auxin is depleted from crk5 root tips. However, no tip collapse is observed and the transcription of genes for auxin biosynthesis, AUXIN TRANSPORTER/AUXIN TRANSPORTER-LIKE PROTEIN (AUX/LAX) auxin influx, and PIN-FORMED (PIN) efflux carriers is unaffected by the crk5 mutation. Whereas AUX1, PIN1, PIN3, PIN4, and PIN7 display normal localization, PIN2 is depleted from apical membranes of epidermal cells and shows basal to apical relocalization in the cortex of the crk5 root transition zone. This, together with an increase in the number of crk5 lateral root primordia, suggests facilitated auxin efflux through the cortex toward the elongation zone. CRK5 is a plasma membrane-associated kinase that forms U-shaped patterns facing outer lateral walls of epidermis and cortex cells. Brefeldin inhibition of exocytosis stimulates CRK5 internalization into brefeldin bodies. CRK5 phosphorylates the hydrophilic loop of PIN2 in vitro, and PIN2 shows accelerated accumulation in brefeldin bodies in the crk5 mutant. Delayed gravitropic response of the crk5 mutant thus likely reflects defective phosphorylation of PIN2 and deceleration of its brefeldin-sensitive membrane recycling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Exocitosis , Gravitropismo , Raíces de Plantas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/enzimología , Electroforesis en Gel de Poliacrilamida , Activación Enzimática , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ácidos Indolacéticos/metabolismo , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , Fosforilación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
10.
Plant J ; 77(6): 944-53, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24456507

RESUMEN

Transcription factors (TFs) are key regulators of gene expression in all organisms. In eukaryotes, TFs are often represented by functionally redundant members of large gene families. Overexpression might prove a means to unveil the biological functions of redundant TFs; however, constitutive overexpression of TFs frequently causes severe developmental defects, preventing their functional characterization. Conditional overexpression strategies help to overcome this problem. Here, we report on the TRANSPLANTA collection of Arabidopsis lines, each expressing one of 949 TFs under the control of a ß-estradiol-inducible promoter. Thus far, 1636 independent homozygous lines, representing an average of 2.6 lines for every TF, have been produced for the inducible expression of 634 TFs. Along with a GUS-GFP reporter, randomly selected TRANSPLANTA lines were tested and confirmed for conditional transgene expression upon ß-estradiol treatment. As a proof of concept for the exploitation of this resource, ß-estradiol-induced proliferation of root hairs, dark-induced senescence, anthocyanin accumulation and dwarfism were observed in lines conditionally expressing full-length cDNAs encoding RHD6, WRKY22, MYB123/TT2 and MYB26, respectively, in agreement with previously reported phenotypes conferred by these TFs. Further screening performed with other TRANSPLANTA lines allowed the identification of TFs involved in different plant biological processes, illustrating that the collection is a powerful resource for the functional characterization of TFs. For instance, ANAC058 and a TINY/AP2 TF were identified as modulators of ABA-mediated germination potential, and RAP2.10/DEAR4 was identified as a regulator of cell death in the hypocotyl-root transition zone. Seeds of TRANSPLANTA lines have been deposited at the Nottingham Arabidopsis Stock Centre for further distribution.


Asunto(s)
Arabidopsis/genética , Plantas Modificadas Genéticamente , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Ácido Abscísico/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN Complementario/genética , Estradiol/metabolismo , Expresión Génica , Genes Reporteros , Vectores Genéticos , Germinación , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Plantones/genética , Plantones/metabolismo , Semillas/genética , Semillas/metabolismo , Factores de Transcripción/genética , Transgenes
11.
EMBO J ; 30(4): 731-43, 2011 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-21240189

RESUMEN

Protein ubiquitylation regulates a broad variety of biological processes in all eukaryotes. Recent work identified a novel class of cullin-containing ubiquitin ligases (E3s) composed of CUL4, DDB1, and one WD40 protein, believed to act as a substrate receptor. Strikingly, CUL4-based E3 ligases (CRL4s) have important functions at the chromatin level, including responses to DNA damage in metazoans and plants and, in fission yeast, in heterochromatin silencing. Among putative CRL4 receptors we identified MULTICOPY SUPPRESSOR OF IRA1 (MSI1), which belongs to an evolutionary conserved protein family. MSI1-like proteins contribute to different protein complexes, including the epigenetic regulatory Polycomb repressive complex 2 (PRC2). Here, we provide evidence that Arabidopsis MSI1 physically interacts with DDB1A and is part of a multimeric protein complex including CUL4. CUL4 and DDB1 loss-of-function lead to embryo lethality. Interestingly, as in fis class mutants, cul4 mutants exhibit autonomous endosperm initiation and loss of parental imprinting of MEDEA, a target gene of the Arabidopsis PRC2 complex. In addition, after pollination both MEDEA transcript and protein accumulate in a cul4 mutant background. Overall, our work provides the first evidence of a physical and functional link between a CRL4 E3 ligase and a PRC2 complex, thus indicating a novel role of ubiquitylation in the repression of gene expression.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cullin/metabolismo , Proteínas de Unión al ADN/metabolismo , Impresión Genómica/fisiología , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Proteínas Cullin/genética , Proteínas Cullin/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica de las Plantas , Impresión Genómica/genética , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/fisiología , Plantas Modificadas Genéticamente , Unión Proteica/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Homología de Secuencia de Aminoácido , Ubiquitinación/fisiología
12.
Plant Physiol ; 165(3): 1203-1220, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24808098

RESUMEN

Seed germination is controlled by environmental signals, including light and endogenous phytohormones. Abscisic acid (ABA) inhibits, whereas gibberellin promotes, germination and early seedling development, respectively. Here, we report that ZFP3, a nuclear C2H2 zinc finger protein, acts as a negative regulator of ABA suppression of seed germination in Arabidopsis (Arabidopsis thaliana). Accordingly, regulated overexpression of ZFP3 and the closely related ZFP1, ZFP4, ZFP6, and ZFP7 zinc finger factors confers ABA insensitivity to seed germination, while the zfp3 zfp4 double mutant displays enhanced ABA susceptibility. Reduced expression of several ABA-induced genes, such as RESPONSIVE TO ABSCISIC ACID18 and transcription factor ABSCISIC ACID-INSENSITIVE4 (ABI4), in ZFP3 overexpression seedlings suggests that ZFP3 negatively regulates ABA signaling. Analysis of ZFP3 overexpression plants revealed multiple phenotypic alterations, such as semidwarf growth habit, defects in fertility, and enhanced sensitivity of hypocotyl elongation to red but not to far-red or blue light. Analysis of genetic interactions with phytochrome and abi mutants indicates that ZFP3 enhances red light signaling by photoreceptors other than phytochrome A and additively increases ABA insensitivity conferred by the abi2, abi4, and abi5 mutations. These data support the conclusion that ZFP3 and the related ZFP subfamily of zinc finger factors regulate light and ABA responses during germination and early seedling development.

13.
Plant Physiol ; 165(1): 319-34, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24676858

RESUMEN

Heat shock factors (HSFs) are principal regulators of plant responses to several abiotic stresses. Here, we show that estradiol-dependent induction of HSFA4A confers enhanced tolerance to salt and oxidative agents, whereas inactivation of HSFA4A results in hypersensitivity to salt stress in Arabidopsis (Arabidopsis thaliana). Estradiol induction of HSFA4A in transgenic plants decreases, while the knockout hsfa4a mutation elevates hydrogen peroxide accumulation and lipid peroxidation. Overexpression of HSFA4A alters the transcription of a large set of genes regulated by oxidative stress. In yeast (Saccharomyces cerevisiae) two-hybrid and bimolecular fluorescence complementation assays, HSFA4A shows homomeric interaction, which is reduced by alanine replacement of three conserved cysteine residues. HSFA4A interacts with mitogen-activated protein kinases MPK3 and MPK6 in yeast and plant cells. MPK3 and MPK6 phosphorylate HSFA4A in vitro on three distinct sites, serine-309 being the major phosphorylation site. Activation of the MPK3 and MPK6 mitogen-activated protein kinase pathway led to the transcriptional activation of the HEAT SHOCK PROTEIN17.6A gene. In agreement that mutation of serine-309 to alanine strongly diminished phosphorylation of HSFA4A, it also strongly reduced the transcriptional activation of HEAT SHOCK PROTEIN17.6A. These data suggest that HSFA4A is a substrate of the MPK3/MPK6 signaling and that it regulates stress responses in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Oxidativo , Tolerancia a la Sal , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células Cultivadas , ADN Bacteriano/genética , Estradiol/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Datos de Secuencia Molecular , Mutagénesis Insercional/genética , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Fosforilación/efectos de los fármacos , Plantas Modificadas Genéticamente , Unión Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Salinidad , Tolerancia a la Sal/efectos de los fármacos , Tolerancia a la Sal/genética , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos , Transformación Genética/efectos de los fármacos
14.
Plant Cell ; 24(4): 1626-42, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22547781

RESUMEN

Phosphorylation of conserved Y1S2P3T4S5P6S7 repeats in the C-terminal domain of largest subunit of RNA polymerase II (RNAPII CTD) plays a central role in the regulation of transcription and cotranscriptional RNA processing. Here, we show that Ser phosphorylation of Arabidopsis thaliana RNAPII CTD is governed by CYCLIN-DEPENDENT KINASE F;1 (CDKF;1), a unique plant-specific CTD S7-kinase. CDKF;1 is required for in vivo activation of functionally redundant CYCLIN-DEPENDENT KINASE Ds (CDKDs), which are major CTD S5-kinases that also phosphorylate in vitro the S2 and S7 CTD residues. Inactivation of CDKF;1 causes extreme dwarfism and sterility. Inhibition of CTD S7-phosphorylation in germinating cdkf;1 seedlings is accompanied by 3'-polyadenylation defects of pre-microRNAs and transcripts encoding key regulators of small RNA biogenesis pathways. The cdkf;1 mutation also decreases the levels of both precursor and mature small RNAs without causing global downregulation of the protein-coding transcriptome and enhances the removal of introns that carry pre-microRNA stem-loops. A triple cdkd knockout mutant is not viable, but a combination of null and weak cdkd;3 alleles in a triple cdkd123* mutant permits semidwarf growth. Germinating cdkd123* seedlings show reduced CTD S5-phosphorylation, accumulation of uncapped precursor microRNAs, and a parallel decrease in mature microRNA. During later development of cdkd123* seedlings, however, S7-phosphorylation and unprocessed small RNA levels decline similarly as in the cdkf;1 mutant. Taken together, cotranscriptional processing and stability of a set of small RNAs and transcripts involved in their biogenesis are sensitive to changes in the phosphorylation of RNAPII CTD by CDKF;1 and CDKDs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Quinasas Ciclina-Dependientes/metabolismo , Fosfoserina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Vías Biosintéticas/genética , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , MicroARNs/genética , MicroARNs/metabolismo , Mutación/genética , Hibridación de Ácido Nucleico , Fosforilación , Estructura Terciaria de Proteína , Caperuzas de ARN/metabolismo , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN/genética , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/biosíntesis , ARN de Planta/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN no Traducido/genética , Transcripción Genética
15.
Nat Genet ; 38(1): 63-7, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16311592

RESUMEN

Double fertilization of the egg cell and the central cell by one sperm cell each produces the diploid embryo and the typically triploid endosperm and is one of the defining characteristics of flowering plants (angiosperms). Endosperm and embryo develop in parallel to form the mature seed, but little is known about the coordination between these two organisms. We characterized a mutation of the Arabidopsis thaliana Cdc2 homolog CDC2A (also called CDKA;1), which has a paternal effect. In cdc2a mutant pollen, only one sperm cell, instead of two, is produced. Mutant pollen is viable but can fertilize only one cell in the embryo sac, allowing for a genetic dissection of the double fertilization process. We observed exclusive fertilization of the egg cell by cdc2a sperm cells. Moreover, we found that unfertilized endosperm developed, suggesting that a previously unrecognized positive signal from the fertilization of the egg cell initiates proliferation of the central cell.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteína Quinasa CDC2/genética , Polen/fisiología , Semillas/citología , Semillas/fisiología , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteína Quinasa CDC2/metabolismo , Magnoliopsida/fisiología , Datos de Secuencia Molecular , Mutación , Transducción de Señal
16.
EMBO J ; 29(17): 2979-93, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20683442

RESUMEN

The 40S ribosomal protein S6 kinase (S6K) is a conserved component of signalling pathways controlling growth in eukaryotes. To study S6K function in plants, we isolated single- and double-knockout mutations and RNA-interference (RNAi)-silencing lines in the linked Arabidopsis S6K1 and S6K2 genes. Hemizygous s6k1s6k2/++ mutant and S6K1 RNAi lines show high phenotypic instability with variation in size, increased trichome branching, produce non-viable pollen and high levels of aborted seeds. Analysis of their DNA content by flow cytometry, as well as chromosome counting using DAPI staining and fluorescence in situ hybridization, revealed an increase in ploidy and aneuploidy. In agreement with this data, we found that S6K1 associates with the Retinoblastoma-related 1 (RBR1)-E2FB complex and this is partly mediated by its N-terminal LVxCxE motif. Moreover, the S6K1-RBR1 association regulates RBR1 nuclear localization, as well as E2F-dependent expression of cell cycle genes. Arabidopsis cells grown under nutrient-limiting conditions require S6K for repression of cell proliferation. The data suggest a new function for plant S6K as a repressor of cell proliferation and required for maintenance of chromosome stability and ploidy levels.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Inestabilidad Cromosómica , Factores de Transcripción E2F/metabolismo , Proteínas Quinasas S6 Ribosómicas/genética , Arabidopsis/química , Arabidopsis/genética , ADN de Plantas/análisis , Citometría de Flujo , Colorantes Fluorescentes/farmacología , Técnicas de Inactivación de Genes , Hibridación Fluorescente in Situ , Indoles/farmacología , Ploidias , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Quinasas S6 Ribosómicas/metabolismo , Coloración y Etiquetado
17.
Plant Physiol ; 163(1): 305-17, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23893173

RESUMEN

Switch (SWI)/Sucrose Nonfermenting (SNF)-type chromatin-remodeling complexes (CRCs) are involved in regulation of transcription, DNA replication and repair, and cell cycle. Mutations of conserved subunits of plant CRCs severely impair growth and development; however, the underlying causes of these phenotypes are largely unknown. Here, we show that inactivation of SWI3C, the core component of Arabidopsis (Arabidopsis thaliana) SWI/SNF CRCs, interferes with normal functioning of several plant hormone pathways and alters transcriptional regulation of key genes of gibberellin (GA) biosynthesis. The resulting reduction of GA4 causes severe inhibition of hypocotyl and root elongation, which can be rescued by exogenous GA treatment. In addition, the swi3c mutation inhibits DELLA-dependent transcriptional activation of GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptor genes. Down-regulation of GID1a in parallel with the DELLA repressor gene REPRESSOR OF GA1-3 1 in swi3c indicates that lack of SWI3C also leads to defects in GA signaling. Together with the recent demonstration of function of SWI/SNF ATPase BRAHMA in the GA pathway, these results reveal a critical role of SWI/SNF CRC in the regulation of GA biosynthesis and signaling. Moreover, we demonstrate that SWI3C is capable of in vitro binding to, and shows in vivo bimolecular fluorescence complementation interaction in cell nuclei with, the DELLA proteins RGA-LIKE2 and RGA-LIKE3, which affect transcriptional activation of GID1 and GA3ox (GIBBERELLIN 3-OXIDASE) genes controlling GA perception and biosynthesis, respectively. Furthermore, we show that SWI3C also interacts with the O-GlcNAc (O-linked N-acetylglucosamine) transferase SPINDLY required for proper functioning of DELLAs and acts hypostatically to (SPINDLY) in the GA response pathway. These findings suggest that DELLA-mediated effects in GA signaling as well as their role as a hub in hormonal cross talk may be, at least in part, dependent on their direct physical interaction with complexes responsible for modulation of chromatin structure.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/efectos de los fármacos , Proteínas Cromosómicas no Histona/fisiología , Giberelinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Transducción de Señal/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica de las Plantas
18.
Plant Cell ; 23(10): 3671-83, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22003076

RESUMEN

Multicellular organisms depend on cell production, cell fate specification, and correct patterning to shape their adult body. In plants, auxin plays a prominent role in the timely coordination of these different cellular processes. A well-studied example is lateral root initiation, in which auxin triggers founder cell specification and cell cycle activation of xylem pole-positioned pericycle cells. Here, we report that the E2Fa transcription factor of Arabidopsis thaliana is an essential component that regulates the asymmetric cell division marking lateral root initiation. Moreover, we demonstrate that E2Fa expression is regulated by the LATERAL ORGAN BOUNDARY DOMAIN18/LATERAL ORGAN BOUNDARY DOMAIN33 (LBD18/LBD33) dimer that is, in turn, regulated by the auxin signaling pathway. LBD18/LBD33 mediates lateral root organogenesis through E2Fa transcriptional activation, whereas E2Fa expression under control of the LBD18 promoter eliminates the need for LBD18. Besides lateral root initiation, vascular patterning is disrupted in E2Fa knockout plants, similarly as it is affected in auxin signaling and lbd mutants, indicating that the transcriptional induction of E2Fa through LBDs represents a general mechanism for auxin-dependent cell cycle activation. Our data illustrate how a conserved mechanism driving cell cycle entry has been adapted evolutionarily to connect auxin signaling with control of processes determining plant architecture.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Ciclo Celular/fisiología , Factores de Transcripción E2F/genética , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/fisiología , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción E2F/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Técnicas de Inactivación de Genes , Mutagénesis Insercional , Raíces de Plantas/citología , Raíces de Plantas/genética , Haz Vascular de Plantas/citología , Haz Vascular de Plantas/genética , Haz Vascular de Plantas/fisiología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Transducción de Señal/fisiología , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
19.
Plant Cell ; 23(12): 4394-410, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22167059

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin ligase that regulates progression through the cell cycle by marking key cell division proteins for destruction. To ensure correct cell cycle progression, accurate timing of APC/C activity is important, which is obtained through its association with both activating and inhibitory subunits. However, although the APC/C is highly conserved among eukaryotes, no APC/C inhibitors are known in plants. Recently, we have identified ULTRAVIOLET-B-INSENSITIVE4 (UVI4) as a plant-specific component of the APC/C. Here, we demonstrate that UVI4 uses conserved APC/C interaction motifs to counteract the activity of the CELL CYCLE SWITCH52 A1 (CCS52A1) activator subunit, inhibiting the turnover of the A-type cyclin CYCA2;3. UVI4 is expressed in an S phase-dependent fashion, likely through the action of E2F transcription factors. Correspondingly, uvi4 mutant plants failed to accumulate CYCA2;3 during the S phase and prematurely exited the cell cycle, triggering the onset of the endocycle. We conclude that UVI4 regulates the temporal inactivation of APC/C during DNA replication, allowing CYCA2;3 to accumulate above the level required for entering mitosis, and thereby regulates the meristem size and plant growth rate.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , División Celular , Ciclina A2/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Arabidopsis/anatomía & histología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Inmunoprecipitación de Cromatina , Ciclina A2/genética , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Meristema/ultraestructura , Microscopía Electrónica de Rastreo , Mutagénesis Sitio-Dirigida , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Fase S , Relación Estructura-Actividad , Activación Transcripcional , Transformación Genética , Técnicas del Sistema de Dos Híbridos , Complejos de Ubiquitina-Proteína Ligasa/genética
20.
PLoS Genet ; 7(2): e1001303, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21379330

RESUMEN

Seed development in angiosperms is dependent on the interplay among different transcriptional programs operating in the embryo, the endosperm, and the maternally-derived seed coat. In angiosperms, the embryo and the endosperm are products of double fertilization during which the two pollen sperm cells fuse with the egg cell and the central cell of the female gametophyte. In Arabidopsis, analyses of mutants in the cell-cycle regulator CYCLIN DEPENDENT KINASE A;1 (CKDA;1) have revealed the importance of a paternal genome for the effective development of the endosperm and ultimately the seed. Here we have exploited cdka;1 fertilization as a novel tool for the identification of seed regulators and factors involved in parent-of-origin-specific regulation during seed development. We have generated genome-wide transcription profiles of cdka;1 fertilized seeds and identified approximately 600 genes that are downregulated in the absence of a paternal genome. Among those, AGAMOUS-LIKE (AGL) genes encoding Type-I MADS-box transcription factors were significantly overrepresented. Here, AGL36 was chosen for an in-depth study and shown to be imprinted. We demonstrate that AGL36 parent-of-origin-dependent expression is controlled by the activity of METHYLTRANSFERASE1 (MET1) maintenance DNA methyltransferase and DEMETER (DME) DNA glycosylase. Interestingly, our data also show that the active maternal allele of AGL36 is regulated throughout endosperm development by components of the FIS Polycomb Repressive Complex 2 (PRC2), revealing a new type of dual epigenetic regulation in seeds.


Asunto(s)
Proteínas de Arabidopsis/genética , Endospermo/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Proteínas de Dominio MADS/genética , Alelos , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación hacia Abajo/genética , Endospermo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Genes de Plantas/genética , Impresión Genómica , Proteínas de Dominio MADS/metabolismo , Modelos Genéticos , N-Glicosil Hidrolasas/genética , N-Glicosil Hidrolasas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Transactivadores/genética , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA