Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39168126

RESUMEN

Xp11 translocation renal cell carcinoma (tRCC) is a rare, female-predominant cancer driven by a fusion between the transcription factor binding to IGHM enhancer 3 (TFE3) gene on chromosome Xp11.2 and a partner gene on either chromosome X (chrX) or an autosome. It remains unknown what types of rearrangements underlie TFE3 fusions, whether fusions can arise from both the active (chrXa) and inactive X (chrXi) chromosomes, and whether TFE3 fusions from chrXi translocations account for the female predominance of tRCC. To address these questions, we performed haplotype-specific analyses of chrX rearrangements in tRCC whole genomes. We show that TFE3 fusions universally arise as reciprocal translocations and that oncogenic TFE3 fusions can arise from chrXi:autosomal translocations. Female-specific chrXi:autosomal translocations result in a 2:1 female-to-male ratio of TFE3 fusions involving autosomal partner genes and account for the female predominance of tRCC. Our results highlight how X chromosome genetics constrains somatic chrX alterations and underlies cancer sex differences.

2.
Mol Cell Proteomics ; 21(2): 100182, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34922008

RESUMEN

The combination cancer immunotherapies with oncolytic virus (OV) and immune checkpoint blockade (ICB) reinstate otherwise dysfunctional antitumor CD8 T cell responses. One major mechanism that aids such reinstatement of antitumor CD8 T cells involves the availability of new class I major histocompatibility complex (MHC-I)-bound tumor epitopes following therapeutic intervention. Thus, therapy-induced changes within the MHC-I peptidome hold the key to understanding the clinical implications for therapy-reinstated CD8 T cell responses. Here, using mass spectrometry-based immuno-affinity methods and tumor-bearing animals treated with OV and ICB (alone or in combination), we captured the therapy-induced alterations within the tumor MHC-I peptidome, which were then tested for their CD8 T cell response-stimulating activity. We found that the oncolytic reovirus monotherapy drives up- as well as downexpression of tumor MHC-I peptides in a cancer type and oncolysis susceptibility dependent manner. Interestingly, the combination of reovirus + ICB results in higher numbers of differentially expressed MHC-I-associated peptides (DEMHCPs) relative to either monotherapies. Most importantly, OV+ICB-driven DEMHCPs contain biologically active epitopes that stimulate interferon-gamma responses in cognate CD8 T cells, which may mediate clinically desired antitumor attack and cancer immunoediting. These findings highlight that the therapy-induced changes to the MHC-I peptidome contribute toward the reinstated antitumor CD8 T cell attack established following OV + ICB combination cancer immunotherapy.


Asunto(s)
Neoplasias , Virus Oncolíticos , Animales , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Línea Celular Tumoral , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia/métodos , Complejo Mayor de Histocompatibilidad , Neoplasias/genética , Virus Oncolíticos/genética
3.
PLoS Pathog ; 16(9): e1008803, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32956403

RESUMEN

The Dearing isolate of Mammalian orthoreovirus (T3D) is a prominent model of virus-host relationships and a candidate oncolytic virotherapy. Closely related laboratory strains of T3D, originating from the same ancestral T3D isolate, were recently found to exhibit significantly different oncolytic properties. Specifically, the T3DPL strain had faster replication kinetics in a panel of cancer cells and improved tumor regression in an in vivo melanoma model, relative to T3DTD. In this study, we discover that T3DPL and T3DTD also differentially activate host signalling pathways and downstream gene transcription. At equivalent infectious dose, T3DTD induces higher IRF3 phosphorylation and expression of type I IFNs and IFN-stimulated genes (ISGs) than T3DPL. Using mono-reassortants with intermediate replication kinetics and pharmacological inhibitors of reovirus replication, IFN responses were found to inversely correlate with kinetics of virus replication. In other words, slow-replicating T3D strains induce more IFN signalling than fast-replicating T3D strains. Paradoxically, during co-infections by T3DPL and T3DTD, there was still high IRF3 phosphorylation indicating a phenodominant effect by the slow-replicating T3DTD. Using silencing and knock-out of RIG-I to impede IFN, we found that IFN induction does not affect the first round of reovirus replication but does prevent cell-cell spread in a paracrine fashion. Accordingly, during co-infections, T3DPL continues to replicate robustly despite activation of IFN by T3DTD. Using gene expression analysis, we discovered that reovirus can also induce a subset of genes in a RIG-I and IFN-independent manner; these genes were induced more by T3DPL than T3DTD. Polymorphisms in reovirus σ3 viral protein were found to control activation of RIG-I/ IFN-independent genes. Altogether, the study reveals that single amino acid polymorphisms in reovirus genomes can have large impact on host gene expression, by both changing replication kinetics and by modifying viral protein activity, such that two closely related T3D strains can induce opposite cytokine landscapes.


Asunto(s)
Proteínas de la Cápside/metabolismo , Interferones/metabolismo , Polimorfismo Genético , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores de Ácido Retinoico/metabolismo , Infecciones por Reoviridae/virología , Replicación Viral , Proteínas de la Cápside/genética , Citocinas , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Orthoreovirus de los Mamíferos/fisiología , ARN Bicatenario/genética , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Receptores de Ácido Retinoico/genética , Infecciones por Reoviridae/genética , Infecciones por Reoviridae/metabolismo , Transducción de Señal
4.
Chem Rev ; 119(2): 797-828, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30295467

RESUMEN

Transition metal complexes are of increasing interest as photosensitizers in photodynamic therapy (PDT) and, more recently, for photochemotherapy (PCT). In recent years, Ru(II) polypyridyl complexes have emerged as promising systems for both PDT and PCT. Their rich photochemical and photophysical properties derive from a variety of excited-state electronic configurations accessible with visible and near-infrared light, and these properties can be exploited for both energy- and electron-transfer processes that can yield highly potent oxygen-dependent and/or oxygen-independent photobiological activity. Selected examples highlight the use of rational design in coordination chemistry to control the lowest-energy triplet excited-state configurations for eliciting a particular type of photoreactivity for PDT and/or PCT effects. These principles are also discussed in the context of the development of TLD1433, the first Ru(II)-based photosensitizer for PDT to enter a human clinical trial. The design of TLD1433 arose from a tumor-centered approach, as part of a complete PDT package that includes the light component and the protocol for treating non-muscle invasive bladder cancer. Briefly, this review summarizes the challenges to bringing PDT into mainstream cancer therapy. It considers the chemical and photophysical solutions that transition metal complexes offer, and it puts into context the multidisciplinary effort needed to bring a new drug to clinical trial.


Asunto(s)
Complejos de Coordinación/uso terapéutico , Neoplasias/tratamiento farmacológico , Elementos de Transición/química , Ensayos Clínicos como Asunto , Complejos de Coordinación/química , Humanos , Neoplasias/patología , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Rutenio/química
5.
Proteomics ; 19(5): e1800458, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30710433

RESUMEN

MHC class I (MHC-I)-bound ligands play a pivotal role in CD8 T cell immunity and are hence of major interest in understanding and designing immunotherapies. One of the most commonly utilized approaches for detecting MHC ligands is LC-MS/MS. Unfortunately, the effectiveness of current algorithms to identify MHC ligands from LC-MS/MS data is limited because the search algorithms used were originally developed for proteomics approaches detecting tryptic peptides. Consequently, the analysis often results in inflated false discovery rate (FDR) statistics and an overall decrease in the number of peptides that pass FDR filters. Andreatta et al. describe a new scoring tool (MS-rescue) for peptides from MHC-I immunopeptidome datasets. MS-rescue incorporates the existence of MHC-I peptide motifs to rescore peptides from ligandome data. The tool is demonstrated here using peptides assigned from LC-MS/MS data with PEAKs software but can be deployed on data from any search algorithm. This new approach increased the number of peptides identified by up to 20-30% and promises to aid the discovery of novel MHC-I ligands with immunotherapeutic potential.


Asunto(s)
Péptidos , Espectrometría de Masas en Tándem , Algoritmos , Cromatografía Liquida , Ligandos , Proteómica
6.
J Proteome Res ; 18(6): 2666-2675, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31095916

RESUMEN

Oncolytic viruses (OVs), known for their cancer-killing characteristics, also overturn tumor-associated defects in antigen presentation through the MHC class I pathway and induce protective neo-antitumor CD8 T cell responses. Nonetheless, whether OVs shape the tumor MHC-I ligandome remains unknown. Here, we investigated if an OV induces the presentation of novel MHC I-bound tumor antigens (termed tumor MHC-I ligands). Using comparative mass spectrometry (MS)-based MHC-I ligandomics, we determined differential tumor MHC-I ligand expression following treatment with oncolytic reovirus in a murine ovarian cancer model. In vitro, we found that reovirus changes the tumor ligandome of cancer cells. Concurrent multiplexed quantitative proteomics revealed that the reovirus-induced changes in tumor MHC-I ligand presentation were mostly independent of their source proteins. In an in vivo model, tumor MHC-I ligands induced by reovirus were detectable not only in tumor tissues but also the spleens (a source of antigen-presenting cells) of tumor-bearing mice. Most importantly, therapy-induced MHC-I ligands stimulated antigen-specific IFNγ responses in antitumor CD8 T cells from mice treated with reovirus. These data show that therapy-induced MHC-I ligands may shape underlying neo-antitumor CD8 T cell responses. As such, they should be considered in strategies promoting the efficacy of OV-based cancer immunotherapies.


Asunto(s)
Neoplasias/terapia , Viroterapia Oncolítica , Virus Oncolíticos/genética , Proteómica/métodos , Animales , Presentación de Antígeno/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Células Dendríticas/inmunología , Células Dendríticas/patología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Inmunoterapia , Interferón gamma/genética , Interferón gamma/inmunología , Ligandos , Ratones , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/virología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Anal Chem ; 91(8): 5106-5115, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30779550

RESUMEN

MHC-I peptides are intracellular-cleaved peptides, usually 8-11 amino acids in length, which are presented on the cell surface and facilitate CD8+ T cell responses. Despite the appreciation of CD8+ T-cell antitumor immune responses toward improvement in patient outcomes, the MHC-I peptide ligands that facilitate the response are poorly described. Along these same lines, although many therapies have been recognized for their ability to reinvigorate antitumor CD8+ T-cell responses, whether these therapies alter the MHC-I peptide repertoire has not been fully assessed due to the lack of quantitative strategies. We develop a multiplexing platform for screening therapy-induced MHC-I ligands by employing tandem mass tags (TMTs). We applied this approach to measuring responses to doxorubicin, which is known to promote antitumor CD8+ T-cell responses during its therapeutic administration in cancer patients. Using both in vitro and in vivo systems, we show successful relative quantitation of MHC-I ligands using TMT-based multiplexing and demonstrate that doxorubicin induces MHC-I peptide ligands that are largely derived from mitotic progression and cell-cycle proteins. This high-throughput MHC-I ligand discovery approach may enable further explorations to understand how small molecules and other therapies alter MHC-I ligand presentation that may be harnessed for CD8+ T-cell-based immunotherapies.


Asunto(s)
Antibióticos Antineoplásicos/análisis , Neoplasias del Colon/terapia , Doxorrubicina/análisis , Antígenos de Histocompatibilidad Clase I/análisis , Linfoma/terapia , Animales , Antibióticos Antineoplásicos/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Neoplasias del Colon/inmunología , Doxorrubicina/farmacología , Descubrimiento de Drogas , Células HCT116 , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Inmunoterapia , Ligandos , Linfoma/inmunología , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Células Tumorales Cultivadas
8.
Mol Ther ; 26(8): 2019-2033, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30078441

RESUMEN

Reticulon-4 (RTN4), commonly known as a neurite outgrowth inhibitor (Nogo), is emerging as an important player in human cancers. Clinically, we found lower RTN4 expression in patient-derived tumors was associated with significantly better survival in lung, breast, cervical, and renal cancer patients. To identify the role of RTN4 in cancer biology, we performed mass spectrometry-based quantitative proteomic analysis on cancer cells following RTN4 knockdown and found its link with pro-survival as well as cytoskeleton-related processes. Subsequent mechanistic investigations revealed that RTN4 regulates lipid homeostasis, AKT signaling, and cytoskeleton modulation. In particular, downregulation of RTN4 reduced sphingomyelin synthesis and impaired plasma membrane localization of AKT, wherein AKT phosphorylation, involved in many cancers, was significantly reduced without any comparable effect on AKT-related upstream kinases, in a sphingolipid-dependent manner. Furthermore, knockdown of RTN4 retarded proliferation of cancer cells in vitro as well as tumor xenografts in mice. Finally, RTN4 knockdown affected tubulin stability and promoted higher cytotoxic effects with chemotherapeutic paclitaxel in cancer cells both in vitro and in vivo. In summary, RTN4 is involved in carcinogenesis and represents a molecular candidate that may be targeted to achieve desired antitumor effects in clinics.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Citoesqueleto/metabolismo , Técnicas de Silenciamiento del Gen/métodos , Proteínas Nogo/genética , Paclitaxel/administración & dosificación , Transducción de Señal/efectos de los fármacos , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Células HEK293 , Humanos , Células MCF-7 , Ratones , Paclitaxel/farmacología , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Proteome Res ; 16(4): 1806-1816, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28244318

RESUMEN

Class I major histocompatibility complex (MHC-I)-bound peptide ligands dictate the activation and specificity of CD8+ T cells and thus are important for devising T-cell immunotherapies. In recent times, advances in mass spectrometry (MS) have enabled the precise identification of these MHC-I peptides, wherein MS spectra are compared against a reference proteome. Unfortunately, matching these spectra to reference proteome databases is hindered by inflated search spaces attributed to a lack of enzyme restriction in the searches, limiting the efficiency with which MHC ligands are discovered. Here we offer a solution to this problem whereby we developed a targeted database search approach and accompanying tool SpectMHC, that is based on a priori-predicted MHC-I peptides. We first validated the approach using MS data from two different allotype-specific immunoprecipitates for the C57BL/6 mouse background. We then developed allotype-specific HLA databases to search previously published MS data sets of human peripheral blood mononuclear cells (PBMCs). This targeted search strategy improved peptide identifications for both mouse and human ligandomes by greater than 2-fold and is superior to traditional "no enzyme" searches of reference proteomes. Our targeted database search promises to uncover otherwise missed novel T-cell epitopes of therapeutic potential.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Espectrometría de Masas/métodos , Péptidos/inmunología , Animales , Linfocitos T CD8-positivos/metabolismo , Epítopos de Linfocito T/genética , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Inmunoterapia , Ligandos , Ratones , Péptidos/genética
10.
J Proteome Res ; 16(9): 3391-3406, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28768414

RESUMEN

Myeloid cells play a central role in the context of viral eradication, yet precisely how these cells differentiate throughout the course of acute infections is poorly understood. In this study, we have developed a novel quantitative temporal in vivo proteomics (QTiPs) platform to capture proteomic signatures of temporally transitioning virus-driven myeloid cells directly in situ, thus taking into consideration host-virus interactions throughout the course of an infection. QTiPs, in combination with phenotypic, functional, and metabolic analyses, elucidated a pivotal role for inflammatory CD11b+, Ly6G-, Ly6Chigh-low cells in antiviral immune response and viral clearance. Most importantly, the time-resolved QTiPs data set showed the transition of CD11b+, Ly6G-, Ly6Chigh-low cells into M2-like macrophages, which displayed increased antigen-presentation capacities and bioenergetic demands late in infection. We elucidated the pivotal role of myeloid cells in virus clearance and show how these cells phenotypically, functionally, and metabolically undergo a timely transition from inflammatory to M2-like macrophages in vivo. With respect to the growing appreciation for in vivo examination of viral-host interactions and for the role of myeloid cells, this study elucidates the use of quantitative proteomics to reveal the role and response of distinct immune cell populations throughout the course of virus infection.


Asunto(s)
Interacciones Huésped-Patógeno , Macrófagos/metabolismo , Células Mieloides/metabolismo , Proteómica/métodos , Infecciones por Reoviridae/genética , Animales , Antígenos Ly/genética , Antígenos Ly/inmunología , Biomarcadores/metabolismo , Antígeno CD11b/genética , Antígeno CD11b/inmunología , Diferenciación Celular , Proliferación Celular , Eliminación de Gen , Regulación de la Expresión Génica , Ontología de Genes , Macrófagos/inmunología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Anotación de Secuencia Molecular , Células Mieloides/inmunología , Células Mieloides/virología , Orthoreovirus de los Mamíferos/crecimiento & desarrollo , Orthoreovirus de los Mamíferos/patogenicidad , Receptores CCR2/genética , Receptores CCR2/inmunología , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/metabolismo , Infecciones por Reoviridae/virología , Transducción de Señal , Factores de Tiempo
11.
Nat Protoc ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769145

RESUMEN

Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.

12.
Cell Rep ; 42(8): 112978, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37572322

RESUMEN

The success of precision oncology-which aims to match the right therapies to the right patients based on molecular status-is predicated on a robust pipeline of molecular targets against which therapies can be developed. Recent advances in genomics and functional genetics have enabled the unbiased discovery of novel molecular targets at scale. We summarize the promise and challenges in integrating genomic and functional genetic landscapes of cancer to establish the next generation of cancer targets.

13.
bioRxiv ; 2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37577497

RESUMEN

Xp11 translocation renal cell carcinoma (tRCC) is a female-predominant kidney cancer driven by translocations between the TFE3 gene on chromosome Xp11.2 and partner genes located on either chrX or on autosomes. The rearrangement processes that underlie TFE3 fusions, and whether they are linked to the female sex bias of this cancer, are largely unexplored. Moreover, whether oncogenic TFE3 fusions arise from both the active and inactive X chromosomes in females remains unknown. Here we address these questions by haplotype-specific analyses of whole-genome sequences of 29 tRCC samples from 15 patients and by re-analysis of 145 published tRCC whole-exome sequences. We show that TFE3 fusions universally arise as reciprocal translocations with minimal DNA loss or insertion at paired break ends. Strikingly, we observe a near exact 2:1 female:male ratio in TFE3 fusions arising via X:autosomal translocation (but not via X inversion), which accounts for the female predominance of tRCC. This 2:1 ratio is at least partially attributable to oncogenic fusions involving the inactive X chromosome and is accompanied by partial re-activation of silenced chrX genes on the rearranged chromosome. Our results highlight how somatic alterations involving the X chromosome place unique constraints on tumor initiation and exemplify how genetic rearrangements of the sex chromosomes can underlie cancer sex differences.

14.
Elife ; 112022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35998026

RESUMEN

A splice variant of the androgen receptor that drives prostate cancer resistance translocates into the nucleus using a different mechanism from the full-length receptor and exhibits distinct molecular properties once inside.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/genética , Isoformas de Proteínas/metabolismo , Empalme del ARN , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
15.
Am J Cancer Res ; 12(1): 210-228, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35141014

RESUMEN

Cancer therapies that generate T cell-based anti-cancer immune responses are critical for clinical success and are favored over traditional therapies. One way to elicit T cell immune responses and generate long-lasting anti-cancer immunity is through induction of immunogenic cell death (ICD), a form of regulated cell death that promotes antigenicity and adjuvanticity within dying cells. Therefore, research in the last decade has focused on developing cancer therapies which stimulate ICD. Herein, we report novel photodynamic therapy (PDT) compounds with immunomodulatory and ICD inducing properties. PDT is a clinically approved, minimally invasive anti-cancer treatment option and has been extensively investigated for its tumor-destroying properties, lower side effects, and immune activation capabilities. In this study, we explore two structurally related ruthenium compounds, ML19B01 and ML19B02, that can be activated with near infrared light to elicit superior cytotoxic properties. In addition to its direct cell killing abilities, we investigated the effect of our PSs on immunological pathways upon activation. PDT treatment with ML19B01 and ML19B02 induced differential expression of reactive oxygen species, proinflammatory response-mediating genes, and heat shock proteins. Dying melanoma cells induced by ML19B01-PDT and ML19B02-PDT contained ICD hallmarks such as calreticulin, ATP, and HMGB1, initiated activation of antigen presenting cells, and were efficiently phagocytosed by bone marrow-derived dendritic cells. Most importantly, despite the distinct profiles of ICD hallmark inducing capacities, vaccination with both PDT-induced dying cancer cells established anti-tumor immunity that protected mice against subsequent challenge with melanoma cells.

16.
Front Immunol ; 13: 1047661, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36818473

RESUMEN

CD8 T cells play a central role in antiviral immunity. Type I interferons are among the earliest responders after virus exposure and can cause extensive reprogramming and antigen-independent bystander activation of CD8 T cells. Although bystander activation of pre-existing memory CD8 T cells is known to play an important role in host defense and immunopathology, its impact on naïve CD8 T cells remains underappreciated. Here we report that exposure to reovirus, both in vitro or in vivo, promotes bystander activation of naïve CD8 T cells within 24 hours and that this distinct subtype of CD8 T cell displays an innate, antiviral, type I interferon sensitized signature. The induction of bystander naïve CD8 T cells is STAT1 dependent and regulated through nicotinamide phosphoribosyl transferase (NAMPT)-mediated enzymatic actions within NAD+ salvage metabolic biosynthesis. These findings identify a novel aspect of CD8 T cell activation following virus infection with implications for human health and physiology.


Asunto(s)
NAD , Virosis , Humanos , Linfocitos T CD8-positivos , Antígenos , Antivirales
17.
Mol Ther Oncolytics ; 24: 695-706, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35284625

RESUMEN

Cancer cell energy metabolism plays an important role in dictating the efficacy of oncolysis by oncolytic viruses. To understand the role of multiple myeloma metabolism in reovirus oncolysis, we performed semi-targeted mass spectrometry-based metabolomics on 12 multiple myeloma cell lines and revealed a negative correlation between NAD+ levels and susceptibility to oncolysis. Likewise, a negative correlation was observed between the activity of the rate-limiting NAD+ synthesis enzyme NAMPT and oncolysis. Indeed, depletion of NAD+ levels by pharmacological inhibition of NAMPT using FK866 sensitized several myeloma cell lines to reovirus-induced killing. The myelomas that were most sensitive to this combination therapy expressed a functional p53 and had a metabolic and transcriptomic profile favoring mitochondrial metabolism over glycolysis, with the highest synergistic effect in KMS12 cells. Mechanistically, U-13C-labeled glucose flux, extracellular flux analysis, multiplex proteomics, and cell death assays revealed that the reovirus + FK866 combination caused mitochondrial dysfunction and energy depletion, leading to enhanced autophagic cell death in KMS12 cells. Finally, the combination of reovirus and NAD+ depletion achieved greater antitumor effects in KMS12 tumors in vivo and patient-derived CD138+ multiple myeloma cells. These findings identify NAD+ depletion as a potential combinatorial strategy to enhance the efficacy of oncolytic virus-based therapies in multiple myeloma.

18.
Methods Mol Biol ; 2120: 161-171, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32124318

RESUMEN

Effective immunotherapies rely on specific activation of immune cells. Class I major histocompatibility complex (MHC-I) bound peptide ligands play a major role in dictating the specificity and activation of CD8+ T cells and hence are important in developing T cell-based immunotherapies. Mass spectrometry-based approaches are most commonly used for identifying these MHC-bound peptides, wherein the MS/MS spectra are compared against a reference proteome database. Unfortunately, the effectiveness of matching the immunopeptide MS/MS spectra to a reference proteome database is hindered by inflated search spaces attributed to a lack of enzyme restriction in searches. These large search spaces limit the efficiency with which MHC-I peptides are identified. Here, we describe the implementation of a targeted database search approach and accompanying tool, SpectMHC, that is based on a priori-predicted MHC-I peptides. We have previously shown that this targeted search strategy improved peptide identifications for both mouse and human MHC ligands by greater than two-fold and is superior to traditional "no enzyme" search of reference proteomes (Murphy et al. J Res Proteome 16:1806-1816, 2017).


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Péptidos/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Humanos , Ligandos , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Programas Informáticos
19.
Cytokine Growth Factor Rev ; 56: 4-27, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33183957

RESUMEN

Tumors represent a hostile environment for the effector cells of cancer immunosurveillance. Immunosuppressive receptors and soluble or membrane-bound ligands are abundantly exposed and released by malignant entities and their stromal accomplices. As a consequence, executioners of antitumor immunity inefficiently navigate across cancer tissues and fail to eliminate malignant targets. By inducing immunogenic cancer cell death, oncolytic viruses profoundly reshape the tumor microenvironment. They trigger the local spread of danger signals and tumor-associated (as well as viral) antigens, thus attracting antigen-presenting cells, promoting the activation and expansion of lymphocytic populations, facilitating their infiltration in the tumor bed, and reinvigorating cytotoxic immune activity. The present review recapitulates key chemokines, growth factors and other cytokines that orchestrate this ballet of antitumoral leukocytes upon oncolytic virotherapy.


Asunto(s)
Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Citocinas , Humanos , Neoplasias/terapia , Microambiente Tumoral
20.
Oncoimmunology ; 10(1): 1863626, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33457082

RESUMEN

We report a new class of ruthenium (Ru)-based photosensitizers that induce potent cytotoxicity in melanoma cells following activation with NIR light. In addition to the direct cytotoxic effect, this Ru-based photodynamic therapy induces immunogenic cell death in melanoma cells that can be therapeutically exploited to establish protective antitumor immunity.


Asunto(s)
Complejos de Coordinación , Fotoquimioterapia , Rutenio , Muerte Celular Inmunogénica , Fármacos Fotosensibilizantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA