Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Cancer ; 23(1): 158, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103848

RESUMEN

PARP inhibitor (PARPi) therapy has transformed outcomes for patients with homologous recombination DNA repair (HRR) deficient ovarian cancers, for example those with BRCA1 or BRCA2 gene defects. Unfortunately, PARPi resistance is common. Multiple resistance mechanisms have been described, including secondary mutations that restore the HR gene reading frame. BRCA1 splice isoforms △11 and △11q can contribute to PARPi resistance by splicing out the mutation-containing exon, producing truncated, partially functional proteins. However, the clinical impacts and underlying drivers of BRCA1 exon skipping are not fully understood.We analyzed nine ovarian and breast cancer patient derived xenografts (PDX) with BRCA1 exon 11 frameshift mutations for exon skipping and therapy response, including a matched PDX pair derived from a patient pre- and post-chemotherapy/PARPi. BRCA1 exon 11 skipping was elevated in PARPi resistant PDX tumors. Two independent PDX models acquired secondary BRCA1 splice site mutations (SSMs) that drive exon skipping, confirmed using qRT-PCR, RNA sequencing, immunoblotting and minigene modelling. CRISPR/Cas9-mediated disruption of splicing functionally validated exon skipping as a mechanism of PARPi resistance. SSMs were also enriched in post-PARPi ovarian cancer patient cohorts from the ARIEL2 and ARIEL4 clinical trials.Few PARPi resistance mechanisms have been confirmed in the clinical setting. While secondary/reversion mutations typically restore a gene's reading frame, we have identified secondary mutations in patient cohorts that hijack splice sites to enhance mutation-containing exon skipping, resulting in the overexpression of BRCA1 hypomorphs, which in turn promote PARPi resistance. Thus, BRCA1 SSMs can and should be clinically monitored, along with frame-restoring secondary mutations.


Asunto(s)
Proteína BRCA1 , Resistencia a Antineoplásicos , Exones , Neoplasias Ováricas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Sitios de Empalme de ARN , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Resistencia a Antineoplásicos/genética , Proteína BRCA1/genética , Femenino , Animales , Ratones , Neoplasias Ováricas/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Mutación , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral
2.
Bioinformatics ; 39(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37021934

RESUMEN

SUMMARY: SpliceAI is a widely used splicing prediction tool and its most common application relies on the maximum delta score to assign variant impact on splicing. We developed the SpliceAI-10k calculator (SAI-10k-calc) to extend use of this tool to predict: the splicing aberration type including pseudoexonization, intron retention, partial exon deletion, and (multi)exon skipping using a 10 kb analysis window; the size of inserted or deleted sequence; the effect on reading frame; and the altered amino acid sequence. SAI-10k-calc has 95% sensitivity and 96% specificity for predicting variants that impact splicing, computed from a control dataset of 1212 single-nucleotide variants (SNVs) with curated splicing assay results. Notably, it has high performance (≥84% accuracy) for predicting pseudoexon and partial intron retention. The automated amino acid sequence prediction allows for efficient identification of variants that are expected to result in mRNA nonsense-mediated decay or translation of truncated proteins. AVAILABILITY AND IMPLEMENTATION: SAI-10k-calc is implemented in R (https://github.com/adavi4/SAI-10k-calc) and also available as a Microsoft Excel spreadsheet. Users can adjust the default thresholds to suit their target performance values.


Asunto(s)
Empalme del ARN , Intrones , Exones , ARN Mensajero/metabolismo , Secuencia de Aminoácidos
3.
Curr Genomics ; 24(3): 155-170, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38178986

RESUMEN

Background: Recent studies on CRISPR/Cas9-mediated gene editing in Schistosoma mansoni have shed new light on the study and control of this parasitic helminth. However, the gene editing efficiency in this parasite is modest. Methods: To improve the efficiency of CRISPR/Cas9 genome editing in schistosomes, we used lentivirus, which has been effectively used for gene editing in mammalian cells, to deliver plasmid DNA encoding Cas9 nuclease, a sgRNA targeting acetylcholinesterase (SmAChE) and a mCherry fluorescence marker into schistosomes. Results: MCherry fluorescence was observed in transduced eggs, schistosomula, and adult worms, indicating that the CRISPR components had been delivered into these parasite stages by lentivirus. In addition, clearly changed phenotypes were observed in SmAChE-edited parasites, including decreased SmAChE activity, reduced hatching ability of edited eggs, and altered behavior of miracidia hatched from edited eggs. Next-generation sequencing analysis demonstrated that the lentiviral transduction-based CRISPR/Cas9 gene modifications in SmAChE-edited schistosomes were homology-directed repair predominant but with much lower efficiency than that obtained using electroporation (data previously published by our laboratory) for the delivery of CRISPR components. Conclusion: Taken together, electroporation is more efficient than lentiviral transduction in the delivery of CRISPR/Cas9 into schistosomes for programmed genome editing. The exploration of tactics for enhancing CRISPR/Cas9 gene editing provides the basis for the future improvement of programmed genome editing in S. mansoni.

4.
Hum Mutat ; 43(12): 2054-2062, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36095262

RESUMEN

The clinical classification of variants may change with new information, however, there is limited guidance on how often significant changes in variant classification occur. We used ClinVar to examine how variant classification changes over time. We developed a custom parser and accessed variant data from ClinVar between January 2015 and July 2021. The ClinVar-assigned "aggregate" classification of variants in 121 hereditary cancer genes was harmonized across releases to align to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology terms. Aggregate classification categories were grouped as: benign/likely benign (B/LB); likely pathogenic/pathogenic (LP/P); variant of uncertain significance (VUS); conflicting interpretations of pathogenicity (Conflicting); or Other. We profiled changes in aggregate variant classification between consecutive semi-annual ClinVar releases. The proportion of variants that changed aggregate classification between semi-annual ClinVar releases ranged from 0.6% to 6.4%. The most frequent changes were "VUS to conflicting," "other to LP/P," and "B/LB to Conflicting." A limited number of variants changed aggregate classification from "LP/P to B/LB," or vice versa. Our analysis indicates need for regular reassessment of clinical variant interpretations. The parser developed for this project will facilitate extraction of relevant interpretation data from ClinVar.


Asunto(s)
Pruebas Genéticas , Neoplasias , Humanos , Estados Unidos , Variación Genética , Predisposición Genética a la Enfermedad , Genómica , Programas Informáticos , Neoplasias/diagnóstico , Neoplasias/genética
5.
FASEB J ; 35(1): e21205, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33337558

RESUMEN

CRISPR/Cas9-mediated genome editing shows cogent potential for the genetic modification of helminth parasites. We report successful gene knock-in (KI) into the genome of the egg of Schistosoma mansoni by combining CRISPR/Cas9 with single-stranded oligodeoxynucleotides (ssODNs). We edited the acetylcholinesterase (AChE) gene of S. mansoni targeting two guide RNAs (gRNAs), X5 and X7, located on exon 5 and exon 7 of Smp_154600, respectively. Eggs recovered from livers of experimentally infected mice were transfected by electroporation with a CRISPR/Cas9-vector encoding gRNA X5 or X7 combining with/ without a ssODN donor. Next generation sequencing analysis of reads of amplicon libraries spanning targeted regions revealed that the major modifications induced by CRISPR/Cas9 in the eggs were generated by homology directed repair (HDR). Furthermore, soluble egg antigen from AChE-edited eggs exhibited markedly reduced AChE activity, indicative that programed Cas9 cleavage mutated the AChE gene. Following injection of AChE-edited schistosome eggs into the tail veins of mice, an significantly enhanced Th2 response involving IL-4, -5, -10, and-13 was detected in lung cells and splenocytes in mice injected with X5-KI eggs in comparison to control mice injected with unmutated eggs. A Th2-predominant response, with increased levels of IL-4, -13, and GATA3, also was induced by X5 KI eggs in small intestine-draining mesenteric lymph node cells when the gene-edited eggs were introduced into the subserosa of the ileum of the mice. These findings confirmed the potential and the utility of CRISPR/Cas9-mediated genome editing for functional genomics in schistosomes.


Asunto(s)
Acetilcolinesterasa/metabolismo , Sistemas CRISPR-Cas , Edición Génica , Proteínas del Helminto/metabolismo , Schistosoma mansoni/enzimología , Esquistosomiasis mansoni/metabolismo , Acetilcolinesterasa/genética , Animales , Femenino , Proteínas del Helminto/genética , Ratones , Schistosoma mansoni/genética , Esquistosomiasis mansoni/genética
6.
J Pathol ; 244(5): 586-597, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29282716

RESUMEN

Genomic instability and mutations are fundamental aspects of human malignancies, leading to progressive accumulation of the hallmarks of cancer. For some time, it has been clear that key mutations may be used as both prognostic and predictive biomarkers, the best-known examples being the presence of germline BRCA1 or BRCA2 mutations, which are not only associated with improved prognosis in ovarian cancer, but are also predictive of response to poly(ADP-ribose) polymerase (PARP) inhibitors. Although biomarkers as specific and powerful as these are rare in human malignancies, next-generation sequencing and improved bioinformatic analyses are revealing mutational signatures, i.e. broader patterns of alterations in the cancer genome that have the power to reveal information about underlying driver mutational processes. Thus, the cancer genome can act as a stratification factor in clinical trials and, ultimately, will be used to drive personalized treatment decisions. In this review, we use ovarian high-grade serous carcinoma (HGSC) as an example of a disease of extreme genomic complexity that is marked by widespread copy number alterations, but that lacks powerful driver oncogene mutations. Understanding of the genomics of HGSC has led to the routine introduction of germline and somatic BRCA1/2 testing, as well as testing of mutations in other homologous recombination genes, widening the range of patients who may benefit from PARP inhibitors. We will discuss how whole genome-wide analyses, including loss of heterozygosity quantification and whole genome sequencing, may extend this paradigm to allow all patients to benefit from effective targeted therapies. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Biomarcadores de Tumor/genética , Daño del ADN , Reparación del ADN , Genómica/métodos , Neoplasias Quísticas, Mucinosas y Serosas/genética , Neoplasias Ováricas/genética , Patología Molecular/métodos , Animales , Proteína BRCA1/genética , Proteína BRCA2/genética , Toma de Decisiones Clínicas , Femenino , Predisposición Genética a la Enfermedad , Humanos , Mutación , Clasificación del Tumor , Neoplasias Quísticas, Mucinosas y Serosas/tratamiento farmacológico , Neoplasias Quísticas, Mucinosas y Serosas/patología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Fenotipo , Medicina de Precisión , Valor Predictivo de las Pruebas
7.
Hum Mutat ; 39(3): 394-405, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29215764

RESUMEN

Ovarian cancer patients with germline or somatic pathogenic variants benefit from treatment with poly ADP ribose polymerase (PARP) inhibitors. Tumor BRCA1/2 testing is more challenging than germline testing as the majority of samples are formalin-fixed paraffin embedded (FFPE), the tumor genome is complex, and the allelic fraction of somatic variants can be low. We collaborated with 10 laboratories testing BRCA1/2 in tumors to compare different approaches to identify clinically important variants within FFPE tumor DNA samples. This was not a proficiency study but an inter-laboratory comparison to identify common issues. Each laboratory received the same tumor DNA samples ranging in genotype, quantity, quality, and variant allele frequency (VAF). Each laboratory performed their preferred next-generation sequencing method to report on the variants. No false positive results were reported in this small study and the majority of methods detected the low VAF variants. A number of variants were not detected due to the bioinformatics analysis, variant classification, or insufficient DNA. The use of hybridization capture or short amplicon methods are recommended based on a bioinformatic assessment of the data. The study highlights the importance of establishing standards and standardization for tBRCA testing particularly when the test results dictate clinical decisions regarding life extending therapies.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Pruebas Genéticas/métodos , Neoplasias/genética , Pautas de la Práctica en Medicina , Biología Computacional , Variaciones en el Número de Copia de ADN/genética , Exones/genética , Frecuencia de los Genes/genética , Genotipo , Humanos
8.
Hum Mutat ; 36(4): 411-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25664426

RESUMEN

Conventional means of identifying variants in high-throughput sequencing align each read against a reference sequence, and then call variants at each position. Here, we demonstrate an orthogonal means of identifying sequence variation by grouping the reads as amplicons prior to any alignment. We used AmpliVar to make key-value hashes of sequence reads and group reads as individual amplicons using a table of flanking sequences. Low-abundance reads were removed according to a selectable threshold, and reads above this threshold were aligned as groups, rather than as individual reads, permitting the use of sensitive alignment tools. We show that this approach is more sensitive, more specific, and more computationally efficient than comparable methods for the analysis of amplicon-based high-throughput sequencing data. The method can be extended to enable alignment-free confirmation of variants seen in hybridization capture target-enrichment data.


Asunto(s)
Análisis Mutacional de ADN/métodos , Genómica/métodos , Programas Informáticos , Biología Computacional/métodos , Biblioteca de Genes , Variación Genética , Técnicas de Genotipaje , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Internet , Mutación , Técnicas de Amplificación de Ácido Nucleico
10.
Ther Adv Med Oncol ; 16: 17588359231220511, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38293277

RESUMEN

Epigenetic alterations, including aberrant DNA methylation, are now recognized as bone fide hallmarks of cancer, which can contribute to cancer initiation, progression, therapy responses and therapy resistance. Methylation of gene promoters can have a range of impacts on cancer risk, clinical stratification and therapeutic outcomes. We provide several important examples of genes, which can be silenced or activated by promoter methylation and highlight their clinical implications. These include the mismatch DNA repair genes MLH1 and MSH2, homologous recombination DNA repair genes BRCA1 and RAD51C, the TERT oncogene and genes within the P15/P16/RB1/E2F tumour suppressor axis. We also discuss how these methylation changes might occur in the first place - whether in the context of the CpG island methylator phenotype or constitutional DNA methylation. The choice of assay used to measure methylation can have a significant impact on interpretation of methylation states, and some examples where this can influence clinical decision-making are presented. Aberrant DNA methylation patterns in circulating tumour DNA (ctDNA) are also showing great promise in the context of non-invasive cancer detection and monitoring using liquid biopsies; however, caution must be taken in interpreting these results in cases where constitutional methylation may be present. Thus, this review aims to provide researchers and clinicians with a comprehensive summary of this broad, but important subject, illustrating the potentials and pitfalls of assessing aberrant DNA methylation in cancer.


Silencing genes role in initiation of cancer and clinical impacts Genes can be silenced by molecular tags being placed on them. This is a normal process that controls when and where genes are available to be used. In some cases this silencing can be incorrectly applied to genes involved in preventing cancer, causing cancer initiation and progression. This review discusses the role of one of these tagging processes, DNA methylation and its role in initiation of cancer and implications for treatment.

11.
NAR Cancer ; 6(3): zcae033, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39055334

RESUMEN

In ovarian and breast cancer, promoter methylation of BRCA1 or RAD51C is a promising biomarker for PARP inhibitor response, as high levels lead to homologous recombination deficiency (HRD). Yet the extent and role of such methylation in other cancers is not clear. This study comprehensively investigated promoter methylation of eight homologous recombination repair genes across 23 solid cancer types. Here, we showed that BRCA1 methylated cancers were associated with reduced gene expression, loss of heterozygosity (LOH), TP53 mutations and genomic features of HRD. We identified BRCA1 methylation in 3% of the copy-number high subtype of endometrial cancer, and as a rare event in six other cancer types, including lung squamous cell, pancreatic, bladder and stomach cancer. RAD51C promoter methylation was widespread across multiple cancer types, but HRD features were only observed for cases which contained high-level tumour methylation and LOH of RAD51C. While RAD51C methylation was frequent in stomach adenocarcinoma (6%) and low-grade glioma (2.5%), it was mostly detected at a low tumour level, suggestive of heterozygous methylation, and was associated with CpG island methylator phenotype. Our findings indicate that high-level tumour methylation of BRCA1 and RAD51C should be explored as a PARP inhibitor biomarker across multiple cancers.

12.
Trends Cancer ; 9(11): 955-967, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37591766

RESUMEN

KRAS is the most frequently mutated oncogene in cancer. Activating mutations in codon 12, especially G12D, have the highest prevalence across a range of carcinomas and adenocarcinomas. With inhibitors to KRAS-G12D now entering clinical trials, understanding the biology of KRAS-G12D cancers, and identifying biomarkers that predict therapeutic response is crucial. In this Review, we discuss the genomics and biology of KRAS-G12D adenocarcinomas, including histological features, transcriptional landscape, the immune microenvironment, and how these factors influence response to therapy. Moreover, we explore potential therapeutic strategies using novel G12D inhibitors, leveraging knowledge gained from clinical trials using G12C inhibitors.


Asunto(s)
Adenocarcinoma , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Mutación , Microambiente Tumoral/genética
13.
Nat Commun ; 14(1): 5758, 2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37717006

RESUMEN

Cells within the tumour microenvironment (TME) can impact tumour development and influence treatment response. Computational approaches have been developed to deconvolve the TME from bulk RNA-seq. Using scRNA-seq profiling from breast tumours we simulate thousands of bulk mixtures, representing tumour purities and cell lineages, to compare the performance of nine TME deconvolution methods (BayesPrism, Scaden, CIBERSORTx, MuSiC, DWLS, hspe, CPM, Bisque, and EPIC). Some methods are more robust in deconvolving mixtures with high tumour purity levels. Most methods tend to mis-predict normal epithelial for cancer epithelial as tumour purity increases, a finding that is validated in two independent datasets. The breast cancer molecular subtype influences this mis-prediction. BayesPrism and DWLS have the lowest combined numbers of false positives and false negatives, and have the best performance when deconvolving granular immune lineages. Our findings highlight the need for more single-cell characterisation of rarer cell types, and suggest that tumour cell compositions should be considered when deconvolving the TME.


Asunto(s)
Neoplasias Mamarias Animales , Música , Animales , Microambiente Tumoral , Linaje de la Célula , RNA-Seq
14.
Sci Rep ; 13(1): 7395, 2023 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149669

RESUMEN

Uncertainty estimation is crucial for understanding the reliability of deep learning (DL) predictions, and critical for deploying DL in the clinic. Differences between training and production datasets can lead to incorrect predictions with underestimated uncertainty. To investigate this pitfall, we benchmarked one pointwise and three approximate Bayesian DL models for predicting cancer of unknown primary, using three RNA-seq datasets with 10,968 samples across 57 cancer types. Our results highlight that simple and scalable Bayesian DL significantly improves the generalisation of uncertainty estimation. Moreover, we designed a prototypical metric-the area between development and production curve (ADP), which evaluates the accuracy loss when deploying models from development to production. Using ADP, we demonstrate that Bayesian DL improves accuracy under data distributional shifts when utilising 'uncertainty thresholding'. In summary, Bayesian DL is a promising approach for generalising uncertainty, improving performance, transparency, and safety of DL models for deployment in the real world.


Asunto(s)
Aprendizaje Profundo , Teorema de Bayes , Reproducibilidad de los Resultados , Incertidumbre , Oncología Médica
15.
Ther Adv Med Oncol ; 15: 17588359231208674, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028140

RESUMEN

Background: Despite initial response to platinum-based chemotherapy and PARP inhibitor therapy (PARPi), nearly all recurrent high-grade serous ovarian cancer (HGSC) will acquire lethal drug resistance; indeed, ~15% of individuals have de novo platinum-refractory disease. Objectives: To determine the potential of anti-microtubule agent (AMA) therapy (paclitaxel, vinorelbine and eribulin) in platinum-resistant or refractory (PRR) HGSC by assessing response in patient-derived xenograft (PDX) models of HGSC. Design and methods: Of 13 PRR HGSC PDX, six were primary PRR, derived from chemotherapy-naïve samples (one was BRCA2 mutant) and seven were from samples obtained following chemotherapy treatment in the clinic (five were mutant for either BRCA1 or BRCA2 (BRCA1/2), four with prior PARPi exposure), recapitulating the population of individuals with aggressive treatment-resistant HGSC in the clinic. Molecular analyses and in vivo treatment studies were undertaken. Results: Seven out of thirteen PRR PDX (54%) were sensitive to treatment with the AMA, eribulin (time to progressive disease (PD) ⩾100 days from the start of treatment) and 11 out of 13 PDX (85%) derived significant benefit from eribulin [time to harvest (TTH) for each PDX with p < 0.002]. In 5 out of 10 platinum-refractory HGSC PDX (50%) and one out of three platinum-resistant PDX (33%), eribulin was more efficacious than was cisplatin, with longer time to PD and significantly extended TTH (each PDX p < 0.02). Furthermore, four of these models were extremely sensitive to all three AMA tested, maintaining response until the end of the experiment (120d post-treatment start). Despite harbouring secondary BRCA2 mutations, two BRCA2-mutant PDX models derived from heavily pre-treated individuals were sensitive to AMA. PRR HGSC PDX models showing greater sensitivity to AMA had high proliferative indices and oncogene expression. Two PDX models, both with prior chemotherapy and/or PARPi exposure, were refractory to all AMA, one of which harboured the SLC25A40-ABCB1 fusion, known to upregulate drug efflux via MDR1. Conclusion: The efficacy observed for eribulin in PRR HGSC PDX was similar to that observed for paclitaxel, which transformed ovarian cancer clinical practice. Eribulin is therefore worthy of further consideration in clinical trials, particularly in ovarian carcinoma with early failure of carboplatin/paclitaxel chemotherapy.

16.
medRxiv ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36993400

RESUMEN

BRCA1 splice isoforms Δ11 and Δ11q can contribute to PARP inhibitor (PARPi) resistance by splicing-out the mutation-containing exon, producing truncated, partially-functional proteins. However, the clinical impact and underlying drivers of BRCA1 exon skipping remain undetermined. We analyzed nine ovarian and breast cancer patient derived xenografts (PDX) with BRCA1 exon 11 frameshift mutations for exon skipping and therapy response, including a matched PDX pair derived from a patient pre- and post-chemotherapy/PARPi. BRCA1 exon 11 skipping was elevated in PARPi resistant PDX tumors. Two independent PDX models acquired secondary BRCA1 splice site mutations (SSMs), predicted in silico to drive exon skipping. Predictions were confirmed using qRT-PCR, RNA sequencing, western blots and BRCA1 minigene modelling. SSMs were also enriched in post-PARPi ovarian cancer patient cohorts from the ARIEL2 and ARIEL4 clinical trials. We demonstrate that SSMs drive BRCA1 exon 11 skipping and PARPi resistance, and should be clinically monitored, along with frame-restoring secondary mutations.

17.
Nat Commun ; 14(1): 3155, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258531

RESUMEN

Oesophageal adenocarcinoma is a poor prognosis cancer and the molecular features underpinning response to treatment remain unclear. We investigate whole genome, transcriptomic and methylation data from 115 oesophageal adenocarcinoma patients mostly from the DOCTOR phase II clinical trial (Australian New Zealand Clinical Trials Registry-ACTRN12609000665235), with exploratory analysis pre-specified in the study protocol of the trial. We report genomic features associated with poorer overall survival, such as the APOBEC mutational and RS3-like rearrangement signatures. We also show that positron emission tomography non-responders have more sub-clonal genomic copy number alterations. Transcriptomic analysis categorises patients into four immune clusters correlated with survival. The immune suppressed cluster is associated with worse survival, enriched with myeloid-derived cells, and an epithelial-mesenchymal transition signature. The immune hot cluster is associated with better survival, enriched with lymphocytes, myeloid-derived cells, and an immune signature including CCL5, CD8A, and NKG7. The immune clusters highlight patients who may respond to immunotherapy and thus may guide future clinical trials.


Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , Humanos , Terapia Neoadyuvante , Multiómica , Australia , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética
18.
Science ; 379(6629): 253-260, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36656928

RESUMEN

Cancer genetics has to date focused on epithelial malignancies, identifying multiple histotype-specific pathways underlying cancer susceptibility. Sarcomas are rare malignancies predominantly derived from embryonic mesoderm. To identify pathways specific to mesenchymal cancers, we performed whole-genome germline sequencing on 1644 sporadic cases and 3205 matched healthy elderly controls. Using an extreme phenotype design, a combined rare-variant burden and ontologic analysis identified two sarcoma-specific pathways involved in mitotic and telomere functions. Variants in centrosome genes are linked to malignant peripheral nerve sheath and gastrointestinal stromal tumors, whereas heritable defects in the shelterin complex link susceptibility to sarcoma, melanoma, and thyroid cancers. These studies indicate a specific role for heritable defects in mitotic and telomere biology in risk of sarcomas.


Asunto(s)
Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Mitosis , Sarcoma , Telómero , Humanos , Variación Genética , Células Germinativas , Melanoma/genética , Mitosis/genética , Sarcoma/genética , Complejo Shelterina/genética , Telómero/genética
19.
Genome Med ; 14(1): 3, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012638

RESUMEN

BACKGROUND: Endometrial cancer (EC) is a major gynecological cancer with increasing incidence. It comprises four molecular subtypes with differing etiology, prognoses, and responses to chemotherapy. In the future, clinical trials testing new single agents or combination therapies will be targeted to the molecular subtype most likely to respond. As pre-clinical models that faithfully represent the molecular subtypes of EC are urgently needed, we sought to develop and characterize a panel of novel EC patient-derived xenograft (PDX) models. METHODS: Here, we report whole exome or whole genome sequencing of 11 PDX models and their matched primary tumor. Analysis of multiple PDX lineages and passages was performed to study tumor heterogeneity across lineages and/or passages. Based on recent reports of frequent defects in the homologous recombination (HR) pathway in EC, we assessed mutational signatures and HR deficiency scores and correlated these with in vivo responses to the PARP inhibitor (PARPi) talazoparib in six PDXs representing the copy number high/p53-mutant and mismatch-repair deficient molecular subtypes of EC. RESULTS: PDX models were successfully generated from grade 2/3 tumors, including three uterine carcinosarcomas. The models showed similar histomorphology to the primary tumors and represented all four molecular subtypes of EC, including five mismatch-repair deficient models. The different PDX lineages showed a wide range of inter-tumor and intra-tumor heterogeneity. However, for most PDX models, one arm recapitulated the molecular landscape of the primary tumor without major genomic drift. An in vivo response to talazoparib was detected in four copy number high models. Two models (carcinosarcomas) showed a response consistent with stable disease and two models (one copy number high serous EC and another carcinosarcoma) showed significant tumor growth inhibition, albeit one consistent with progressive disease; however, all lacked the HR deficiency genomic signature. CONCLUSIONS: EC PDX models represent the four molecular subtypes of disease and can capture intra-tumor heterogeneity of the original primary tumor. PDXs of the copy number high molecular subtype showed sensitivity to PARPi; however, deeper and more durable responses will likely require combination of PARPi with other agents.


Asunto(s)
Antineoplásicos , Neoplasias Endometriales , Antineoplásicos/uso terapéutico , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Femenino , Genómica , Xenoinjertos , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Cancer Res ; 82(23): 4457-4473, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36206301

RESUMEN

Ovarian carcinosarcoma (OCS) is an aggressive and rare tumor type with limited treatment options. OCS is hypothesized to develop via the combination theory, with a single progenitor resulting in carcinomatous and sarcomatous components, or alternatively via the conversion theory, with the sarcomatous component developing from the carcinomatous component through epithelial-to-mesenchymal transition (EMT). In this study, we analyzed DNA variants from isolated carcinoma and sarcoma components to show that OCS from 18 women is monoclonal. RNA sequencing indicated that the carcinoma components were more mesenchymal when compared with pure epithelial ovarian carcinomas, supporting the conversion theory and suggesting that EMT is important in the formation of these tumors. Preclinical OCS models were used to test the efficacy of microtubule-targeting drugs, including eribulin, which has previously been shown to reverse EMT characteristics in breast cancers and induce differentiation in sarcomas. Vinorelbine and eribulin more effectively inhibited OCS growth than standard-of-care platinum-based chemotherapy, and treatment with eribulin reduced mesenchymal characteristics and N-MYC expression in OCS patient-derived xenografts. Eribulin treatment resulted in an accumulation of intracellular cholesterol in OCS cells, which triggered a downregulation of the mevalonate pathway and prevented further cholesterol biosynthesis. Finally, eribulin increased expression of genes related to immune activation and increased the intratumoral accumulation of CD8+ T cells, supporting exploration of immunotherapy combinations in the clinic. Together, these data indicate that EMT plays a key role in OCS tumorigenesis and support the conversion theory for OCS histogenesis. Targeting EMT using eribulin could help improve OCS patient outcomes. SIGNIFICANCE: Genomic analyses and preclinical models of ovarian carcinosarcoma support the conversion theory for disease development and indicate that microtubule inhibitors could be used to suppress EMT and stimulate antitumor immunity.


Asunto(s)
Antineoplásicos , Carcinoma , Carcinosarcoma , Neoplasias Ováricas , Humanos , Femenino , Transición Epitelial-Mesenquimal/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Transformación Celular Neoplásica , Antineoplásicos/farmacología , Microtúbulos , Carcinosarcoma/genética , Carcinosarcoma/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA