RESUMEN
BACKGROUND: High-mobility group box protein 1 [HMGB1] is a ubiquitous nucleoprotein with immune-regulatory properties following cellular secretion or release in sterile and in infectious inflammation. Stool and serum HMGB1 levels correlate with colitis severity and colorectal cancer [CRC] progression, yet recent reports indicate that HMGB1 mainly operates as an intracellular determinant of enterocyte fate during colitis, and investigations into the roles of HMGB1 in CRC are lacking. METHODS: Using mice with conditional HMGB1-knockout in enterocytes [Hmgb1ΔIEC] and myeloid cells [Hmgb1ΔLysM], respectively, we explored functions of HMGB1 in pathogenetically diverse contexts of colitis and colitis-associated CRC. RESULTS: HMGB1 is overexpressed in human inflammatory bowel disease and gastrointestinal cancers, and HMGB1 protein localises in enterocytes and stromal cells in colitis and CRC specimens from humans and rodents. As previously described, enterocyte HMGB1 deficiency aggravates severe chemical-induced intestinal injury, but not Citrobacter rodentium or T cell transfer colitis in mice. HMGB1-deficient enterocytes and organoids do not exhibit deviant apoptotic or autophagic activity, altered proliferative or migratory capacity, abnormal intestinal permeability, or aberrant DSS-induced organoid inflammation in vitro. Instead, we observed altered in vivo reprogramming of both intestinal epithelia and infiltrating myeloid cells in Hmgb1ΔIEC early during colitis, suggesting HMGB1-mediated paracrine injury signalling. Hmgb1ΔIEC had higher CRC burden than wild types in the Apc+/min model, whereas inflammatory CRC was attenuated in Hmgb1ΔLysM. Cellular and molecular phenotyping of Hmgb1ΔIEC and Hmgb1ΔLysM cancers indicates context-dependent transcriptional modulation of immune signalling and extracellular matrix remodelling via HMGB1. CONCLUSION: Enterocytes and myeloid cells context-dependently regulate host responses to severe colitis and maladaptive intestinal wound healing via HMGB1.
Asunto(s)
Colitis , Neoplasias Colorrectales , Proteína HMGB1 , Mucosa Intestinal , Células Mieloides , Animales , Humanos , Ratones , Carcinogénesis/inmunología , Carcinogénesis/genética , Carcinogénesis/metabolismo , Colitis/metabolismo , Colitis/inmunología , Colitis/patología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Modelos Animales de Enfermedad , Enterocitos/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Ratones Noqueados , Células Mieloides/metabolismo , Células Mieloides/inmunología , Índice de Severidad de la EnfermedadRESUMEN
High-mobility group box 1 (HMGB1) is a nucleoprotein with proinflammatory functions following cellular release during tissue damage. Moreover, antibody-mediated HMGB1 neutralization alleviates lipopolysaccharide (LPS)-induced shock, suggesting a role for HMGB1 as a superordinate therapeutic target for inflammatory and infectious diseases. Recent genetic studies have indicated cell-intrinsic functions of HMGB1 in phagocytes as critical elements of immune responses to infections, yet the role of extracellular HMGB1 signaling in this context remains elusive. We performed antibody-mediated and genetic HMGB1 deletion studies accompanied by in vitro experiments to discern context-dependent cellular sources and functions of extracellular HMGB1 during murine bloodstream infection with Listeria monocytogenes. Antibody-mediated neutralization of extracellular HMGB1 favors bacterial dissemination and hepatic inflammation in mice. Hepatocyte HMGB1, a key driver of postnecrotic inflammation in the liver, does not affect Listeria-induced inflammation or mortality. While we confirm that leukocyte HMGB1 deficiency effectuates disseminated listeriosis, we observed no evidence of dysfunctional autophagy, xenophagy, intracellular bacterial degradation, or inflammatory gene induction in primary HMGB1-deficient phagocytes or altered immune responses to LPS administration. Instead, we demonstrate that mice devoid of leukocyte HMGB1 exhibit impaired hepatic recruitment of inflammatory monocytes early during listeriosis, resulting in alterations of the transcriptional hepatic immune response and insufficient control of bacterial dissemination. Bone marrow chimera indicate that HMGB1 from both liver-resident and circulating immune cells contributes to effective pathogen control. Conclusion: Leukocyte-derived extracellular HMGB1 is a critical cofactor in the immunologic control of bloodstream listeriosis. HMGB1 neutralization strategies preclude an efficient host immune response against Listeria.