Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Anticancer Drugs ; 32(1): 34-43, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33079733

RESUMEN

T-cell lymphoid malignancies (TCLMs) are in need of novel and more effective therapies. The histone deacetylase (HDAC) inhibitors and the synthetic cytotoxic retinoid fenretinide have achieved durable clinical responses in T-cell lymphomas as single agents, and patients who failed prior HDAC inhibitor treatment have responded to fenretinide. We have previously shown fenretinide synergized with the class I HDAC inhibitor romidepsin in preclinical models of TCLMs. There exist some key differences between HDAC inhibitors. Therefore, we determined if the pan-HDAC inhibitor vorinostat synergizes with fenretinide. We demonstrated cytotoxic synergy between vorinostat and fenretinide in nine TCLM cell lines at clinically achievable concentrations that lacked cytotoxicity for non-malignant cells (fibroblasts and blood mononuclear cells). In vivo, vorinostat + fenretinide + ketoconazole (enhances fenretinide exposures by inhibiting fenretinide metabolism) showed greater activity in subcutaneous TCLM xenograft models than other groups. Fenretinide + vorinostat increased reactive oxygen species (ROS, measured by 2',7'-dichlorodihydrofluorescein diacetate dye), resulting in increased apoptosis (via transferase dUTP nick end labeling assay) and histone acetylation (by immunoblotting). The synergistic cytotoxicity, apoptosis, and histone acetylation of fenretinide + vorinostat was abrogated by the antioxidant vitamin C. Like romidepsin, vorinostat combined with fenretinide achieved synergistic cytotoxic activity and increased histone acetylation in preclinical models of TCLMs, but not in non-malignant cells. As vorinostat is an oral agent and not a P-glycoprotein substrate it may have advantages in such combination therapy. These data support conducting a clinical trial of vorinostat combined with fenretinide in relapsed and refractory TCLMs.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Sinergismo Farmacológico , Linfoma de Células T/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Adolescente , Adulto , Animales , Apoptosis , Proliferación Celular , Niño , Preescolar , Fenretinida/administración & dosificación , Humanos , Recién Nacido , Linfoma de Células T/metabolismo , Linfoma de Células T/patología , Ratones , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Células Tumorales Cultivadas , Vorinostat/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
2.
Anticancer Drugs ; 32(3): 233-247, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33323683

RESUMEN

DNA-damaging chemotherapy is a major component of therapy for high-risk neuroblastoma, and patients often relapse with treatment-refractory disease. We hypothesized that DNA repair genes with increased expression in alkylating agent resistant models would provide therapeutic targets for enhancing chemotherapy. In-vitro cytotoxicity of alkylating agents for 12 patient-derived neuroblastoma cell lines was assayed using DIMSCAN, and mRNA expression of 57 DNA repair, three transporter, and two glutathione synthesis genes was assessed by TaqMan low-density array (TLDA) with further validation by qRT-PCR in 26 cell lines. O6-methylguanine-DNA methyltransferase (MGMT) mRNA was upregulated in cell lines with greater melphalan and temozolomide (TMZ) resistance. MGMT expression also correlated significantly with resistance to TMZ+irinotecan (IRN) (in-vitro as the SN38 active metabolite). Forced overexpression of MGMT (lentiviral transduction) in MGMT non-expressing cell lines significantly increased TMZ+SN38 resistance. The MGMT inhibitor O6-benzylguanine (O6BG) enhanced TMZ+SN38 in-vitro cytotoxicity, H2AX phosphorylation, caspase-3 cleavage, and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling. TMZ+IRN+O6BG delayed tumor growth and increased survival relative to TMZ+IRN in two of seven patient-derived xenografts established at time of death from progressive neuroblastoma. We demonstrated that high MGMT expression was associated with resistance to alkylating agents and TMZ+IRN in preclinical neuroblastoma models. The MGMT inhibitor O6BG enhanced the anticancer effect of TMZ+IRN in vitro and in vivo. These results support further preclinical studies exploring MGMT as a therapeutic target and biomarker of TMZ+IRN resistance in high-risk neuroblastoma.


Asunto(s)
Antineoplásicos/farmacología , Guanina/análogos & derivados , Irinotecán/farmacología , O(6)-Metilguanina-ADN Metiltransferasa/antagonistas & inhibidores , Temozolomida/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular , Reparación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/fisiología , Guanina/farmacología , Humanos , Ratones , Neuroblastoma/tratamiento farmacológico , ARN Mensajero , Reacción en Cadena en Tiempo Real de la Polimerasa , Regulación hacia Arriba
3.
Anticancer Drugs ; 30(2): 117-127, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30272587

RESUMEN

OBJECTIVE: All-trans-N-(4-hydroxyphenyl)retinamide or fenretinide (4-HPR) acts by reactive oxygen species (ROS) and dihydroceramides (DHCers). In early-phase clinical trials 4-HPR has achieved complete responses in T-cell lymphomas (TCL) and neuroblastoma (NB) and signals of activity in ovarian cancer (OV). We defined the activity of 4-HPR metabolites in N-(4-methoxyphenyl)retinamide (MPR), 4-oxo-N-(4-hydroxyphenyl)retinamide (oxoHPR), and the 4-HPR isomer 13-cis-fenretinide (cis-HPR) in NB, OV, and TCL cell lines cultured in physiological hypoxia. METHODS: We compared the effect of 4-HPR, cis-HPR, oxoHPR, and MPR on cytotoxicity, ROS, and DHCers in a panel of TCL, NB, and OV cell lines cultured in bone marrow level physiological hypoxia (5% O2), utilizing a fluorescence-based cytotoxicity assay (DIMSCAN), flow cytometry, and quantitative mass spectrometry. RESULTS: 4-HPR (10 µmol/l) achieved more than three logs of cell kill in nine of 15 cell lines. Cytotoxicity of 4-HPR and oxoHPR was comparable; in some cell lines, cis-HPR cytotoxicity was lower than 4-HPR, but additive when combined with 4-HPR. MPR was not cytotoxic. ROS and DHCers were equivalently increased by 4-HPR and oxoHPR in all cell lines (P<0.01), to a lesser extent by cis-HPR (P<0.01), and not increased in response to MPR (P>0.05). Mitochondrial membrane depolarization, caspase-3 cleavage, and apoptosis (TUNEL) were all significantly increased by 4-HPR and oxoHPR (P<0.01). CONCLUSION: Cytotoxic and pharmacodynamic activity was comparable with 4-HPR and oxoHPR, lower with cis-HPR, and MPR was inactive. Neither MPR or cis-HPR antagonized 4-HPR activity. These data support focusing on achieving high 4-HPR exposures for maximizing antineoplastic activity.


Asunto(s)
Apoptosis , Fenretinida/química , Fenretinida/farmacología , Hipoxia , Linfoma de Células T/patología , Neuroblastoma/patología , Neoplasias Ováricas/patología , Antineoplásicos/química , Antineoplásicos/farmacología , Proliferación Celular , Sinergismo Farmacológico , Femenino , Humanos , Linfoma de Células T/tratamiento farmacológico , Neuroblastoma/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Células Tumorales Cultivadas
4.
Pediatr Blood Cancer ; 65(12): e27447, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30251395

RESUMEN

BACKGROUND: Maintenance therapy with 13-cis-retinoic acid and immunotherapy (given after completion of intensive cytotoxic therapy) improves outcome for high-risk neuroblastoma patients. The synthetic retinoid fenretinide (4-HPR) achieved multiple complete responses in relapse/refractory neuroblastoma in early-phase clinical trials, has low systemic toxicity, and has been considered for maintenance therapy clinical trials. Difluoromethylornithine (DFMO, an irreversible inhibitor of ornithine decarboxylase with minimal single-agent clinical response data) is being used for maintenance therapy of neuroblastoma. We evaluated the cytotoxic activity of DFMO and fenretinide in neuroblastoma cell lines. PROCEDURE: We tested 16 neuroblastoma cell lines in bone marrow-level hypoxia (5% O2 ) using the DIMSCAN cytotoxicity assay. Polyamines were measured by HPLC-mass spectrometry and apoptosis by transferase dUTP nick end labeling (TUNEL) using flow cytometry. RESULTS: At clinically achievable levels (100 µM), DFMO significantly decreased (P < 0.05) polyamine putrescine and achieved modest cytotoxicity (<1 log (90% cytotoxicity). Prolonged exposures (7 days) or culture in 2% and 20% O2 did not enhance DFMO cytotoxicity. However, fenretinide (10 µM) even at a concentration lower than clinically achievable in neuroblastoma patients (20 µM) induced ≥ 1 log cell kill in 14 cell lines. The average IC90 and IC99 of fenretinide was 4.7 ± 1 µM and 9.9 ± 1.8 µM, respectively. DFMO did not induce a significant increase (P > 0.05) in apoptosis (TUNEL assay). Apoptosis by fenretinide was significantly higher (P < 0.001) compared with DFMO or controls. CONCLUSIONS: DFMO as a single agent has minimal cytotoxic activity for neuroblastoma cell lines.


Asunto(s)
Antineoplásicos/farmacología , Eflornitina/farmacología , Fenretinida/farmacología , Neuroblastoma/patología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Humanos , Concentración 50 Inhibidora
5.
Front Oncol ; 14: 1399442, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224814

RESUMEN

Introduction: Alternative lengthening of telomeres (ALT) occurs in sarcomas and ALT cancers share common mechanisms of therapy resistance or sensitivity. Telomeric DNA C-circles are self-primed circular telomeric repeats detected with a PCR assay that provide a sensitive and specific biomarker exclusive to ALT cancers. We have previously shown that 23% of high-risk neuroblastomas are of the ALT phenotype. Here, we investigate the frequency of ALT in Ewing's family sarcoma (EFS), rhabdomyosarcoma (RMS), and osteosarcoma (OS) by analyzing DNA from fresh frozen primary tumor samples utilizing the real-time PCR C-circle Assay (CCA). Methods: We reviewed prior publications on ALT detection in pediatric sarcomas. DNA was extracted from fresh frozen primary tumors, fluorometrically quantified, C-circles were selectively enriched by isothermal rolling cycle amplification and detected by real-time PCR. Results: The sample cohort consisted of DNA from 95 EFS, 191 RMS, and 87 OS primary tumors. One EFS and 4 RMS samples were inevaluable. Using C-circle positive (CC+) cutoffs previously defined for high-risk neuroblastoma, we observed 0 of 94 EFS, 5 of 187 RMS, and 62 of 87 OS CC+ tumors. Conclusions: Utilizing the ALT-specific CCA we observed ALT in 0% of EFS, 2.7% of RMS, and 71% of OS. These data are comparable to prior studies in EFS and OS using less specific ALT markers. The CCA can provide a robust and sensitive means of identifying ALT in sarcomas and has potential as a companion diagnostic for ALT targeted therapeutics.

6.
Cancer Res ; 82(18): 3345-3358, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35947641

RESUMEN

A subset of cancers across multiple histologies with predominantly poor outcomes use the alternative lengthening of telomeres (ALT) mechanism to maintain telomere length, which can be identified with robust biomarkers. ALT has been reported to be prevalent in high-risk neuroblastoma and certain sarcomas, and ALT cancers are a major clinical challenge that lack targeted therapeutic approaches. Here, we found ALT in a variety of pediatric and adult cancer histologies, including carcinomas. Patient-derived ALT cancer cell lines from neuroblastomas, sarcomas, and carcinomas were hypersensitive to the p53 reactivator eprenetapopt (APR-246) relative to telomerase-positive (TA+) models. Constitutive telomere damage signaling in ALT cells activated ataxia-telangiectasia mutated (ATM) kinase to phosphorylate p53, which resulted in selective ALT sensitivity to APR-246. Treatment with APR-246 combined with irinotecan achieved complete responses in mice xenografted with ALT neuroblastoma, rhabdomyosarcoma, and breast cancer and delayed tumor growth in ALT colon cancer xenografts, while the combination had limited efficacy in TA+ tumor models. A large number of adult and pediatric cancers present with the ALT phenotype, which confers a uniquely high sensitivity to reactivation of p53. These data support clinical evaluation of a combinatorial approach using APR-246 and irinotecan in ALT patients with cancer. SIGNIFICANCE: This work demonstrates that constitutive activation of ATM in chemotherapy-refractory ALT cancer cells renders them hypersensitive to reactivation of p53 function by APR-246, indicating a potential strategy to overcome therapeutic resistance.


Asunto(s)
Carcinoma , Neuroblastoma , Sarcoma , Telomerasa , Animales , Humanos , Irinotecán , Ratones , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Sarcoma/genética , Telomerasa/genética , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Sci Transl Med ; 13(607)2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34408079

RESUMEN

Cancers overcome replicative immortality by activating either telomerase or an alternative lengthening of telomeres (ALT) mechanism. ALT occurs in ~25% of high-risk neuroblastomas, and progression in patients with ALT neuroblastoma during or after front-line therapy is frequent and often fatal. Temozolomide + irinotecan is commonly used as salvage therapy for neuroblastoma. Patient-derived cell lines and xenografts established from patients with relapsed ALT neuroblastoma demonstrated de novo resistance to temozolomide + irinotecan [SN-38 in vitro, P < 0.05; in vivo mouse event-free survival (EFS), P < 0.0001] vs. telomerase-positive neuroblastomas. We observed that ALT neuroblastoma cells manifested constitutive ataxia-telangiectasia mutated (ATM) activation due to spontaneous telomere dysfunction which was not observed in telomerase-positive neuroblastoma cells. We demonstrated that induction of telomere dysfunction resulted in ATM activation that, in turn, conferred resistance to temozolomide + SN-38 (4.2-fold change in IC50, P < 0.001). ATM knockdown (shRNA) or inhibition using a clinical-stage small-molecule inhibitor (AZD0156) reversed resistance to temozolomide + irinotecan in ALT neuroblastoma cell lines in vitro (P < 0.001) and in four ALT xenografts in vivo (EFS, P < 0.0001). AZD0156 showed modest to no enhancement of temozolomide + irinotecan activity in telomerase-positive neuroblastoma cell lines and xenografts. Ataxia telangiectasia and Rad3 related (ATR) inhibition using AZD6738 did not enhance temozolomide + SN-38 activity in ALT neuroblastoma cells. Thus, ALT neuroblastoma chemotherapy resistance occurs via ATM activation and is reversible with ATM inhibitor AZD0156. Combining AZD0156 with temozolomide + irinotecan warrants clinical testing for neuroblastoma.


Asunto(s)
Ataxia Telangiectasia , Neuroblastoma , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Resistencia a Antineoplásicos , Humanos , Ratones , Recurrencia Local de Neoplasia , Neuroblastoma/tratamiento farmacológico , Piridinas , Quinolinas , Telómero , Homeostasis del Telómero
8.
Cancer Res ; 80(12): 2663-2675, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32291317

RESUMEN

Neuroblastoma is a childhood cancer with heterogeneous clinical outcomes. To comprehensively assess the impact of telomere maintenance mechanism (TMM) on clinical outcomes in high-risk neuroblastoma, we integrated the C-circle assay [a marker for alternative lengthening of telomeres (ALT)], TERT mRNA expression by RNA-sequencing, whole-genome/exome sequencing, and clinical covariates in 134 neuroblastoma patient samples at diagnosis. In addition, we assessed TMM in neuroblastoma cell lines (n = 104) and patient-derived xenografts (n = 28). ALT was identified in 23.4% of high-risk neuroblastoma tumors and genomic alterations in ATRX were detected in 60% of ALT tumors; 40% of ALT tumors lacked genomic alterations in known ALT-associated genes. Patients with high-risk neuroblastoma were classified into three subgroups (TERT-high, ALT+, and TERT-low/non-ALT) based on presence of C-circles and TERT mRNA expression (above or below median TERT expression). Event-free survival was similar among TERT-high, ALT+, or TERT-low/non-ALT patients. However, overall survival (OS) for TERT-low/non-ALT patients was significantly higher relative to TERT-high or ALT patients (log-rank test; P < 0.01) independent of current clinical and molecular prognostic markers. Consistent with the observed higher OS in patients with TERT-low/non-ALT tumors, continuous shortening of telomeres and decreasing viability occurred in low TERT-expressing, non-ALT patient-derived high-risk neuroblastoma cell lines. These findings demonstrate that assaying TMM with TERT mRNA expression and C-circles provides precise stratification of high-risk neuroblastoma into three subgroups with substantially different OS: a previously undescribed TERT-low/non-ALT cohort with superior OS (even after relapse) and two cohorts of patients with poor survival that have distinct molecular therapeutic targets. SIGNIFICANCE: These findings assess telomere maintenance mechanisms with TERT mRNA and the ALT DNA biomarker C-circles to stratify neuroblastoma into three groups, with distinct overall survival independent of currently used clinical risk classifiers.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neuroblastoma/genética , Telomerasa/metabolismo , Homeostasis del Telómero , Telómero/metabolismo , Línea Celular Tumoral , Niño , Preescolar , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Lactante , Masculino , Recurrencia Local de Neoplasia , Neuroblastoma/mortalidad , Neuroblastoma/patología , ARN Mensajero/aislamiento & purificación , ARN Mensajero/metabolismo , RNA-Seq , Telomerasa/genética , Telomerasa/aislamiento & purificación , Secuenciación Completa del Genoma , Proteína Nuclear Ligada al Cromosoma X/genética , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Mol Cancer Ther ; 18(12): 2270-2282, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31484706

RESUMEN

Recurrent high-risk neuroblastoma is a childhood cancer that often fails to respond to therapy. Fenretinide (4-HPR) is a cytotoxic retinoid with clinical activity in recurrent neuroblastoma and venetoclax (ABT-199) is a selective inhibitor of the antiapoptotic protein B-cell lymphoma-2 (BCL-2). We evaluated activity of 4-HPR + ABT-199 in preclinical models of neuroblastoma. Patient-derived cell lines and xenografts from progressive neuroblastoma were tested. Cytotoxicity was evaluated by DIMSCAN, apoptosis by flow cytometry, and gene expression by RNA sequencing, quantitative RT-PCR, and immunoblotting. 4-HPR + ABT-199 was highly synergistic against high BCL-2-expressing neuroblastoma cell lines and significantly improved event-free survival of mice carrying high BCL-2-expressing patient-derived xenografts (PDX). In 10 matched-pair cell lines [established at diagnosis (DX) and progressive disease (PD) from the same patients], BCL-2 expression in the DX and PD lines was comparable, suggesting that BCL-2 expression at diagnosis may provide a biomarker for neuroblastomas likely to respond to 4-HPR + ABT-199. In a pair of DX (COG-N-603x) and PD (COG-N-623x) PDXs established from the same patient, COG-N-623x was less responsive to cyclophosphamide + topotecan than COG-N-603x, but both DX and PD PDXs were responsive to 4-HPR + ABT-199. Synergy of 4-HPR + ABT-199 was mediated by induction of NOXA via 4-HPR stimulation of reactive oxygen species that induced expression of ATF4 and ATF3, transcription factors for NOXA. Thus, fenretinide + venetoclax is a synergistic combination that warrants clinical testing in high BCL-2-expressing neuroblastoma.


Asunto(s)
Antineoplásicos/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Fenretinida/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sulfonamidas/uso terapéutico , Animales , Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Fenretinida/farmacología , Humanos , Ratones , Sulfonamidas/farmacología
10.
Mol Cancer Ther ; 16(4): 649-661, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28119491

RESUMEN

T-cell lymphoid malignancies (TCLM) are in need of novel and more effective therapies. The histone deacetylase (HDAC) inhibitor romidepsin and the synthetic cytotoxic retinoid fenretinide both have achieved durable clinical responses in T-cell lymphomas as single agents. We investigated the potential for using these two agents in combination in TCLMs. We demonstrated cytotoxic synergy between romidepsin and fenretinide in 15 TCLM cell lines at clinically achievable concentrations that lacked cytotoxicity for nonmalignant cells (fibroblasts and blood mononuclear cells). In vivo, romidepsin + fenretinide + ketoconazole (enhances fenretinide exposures by inhibiting fenretinide metabolism) showed greater activity in subcutaneous and disseminated TCLM xenograft models than single-agent romidepsin or fenretinide + ketoconazole. Fenretinide + romidepsin caused a reactive oxygen species (ROS)-dependent increase in proapoptotic proteins (Bim, tBid, Bax, and Bak), apoptosis, and inhibition of HDAC enzymatic activity, which achieved a synergistic increase in histone acetylation. The synergistic cytotoxicity, apoptosis, and histone acetylation of fenretinide + romidepsin were abrogated by antioxidants (vitamins C or E). Romidepsin + fenretinide activated p38 and JNK via ROS, and knockdown of p38 and JNK1 significantly decreased the synergistic cytotoxicity. Romidepsin + fenretinide also showed synergistic cytotoxicity for B-lymphoid malignancy cell lines, but did not increase ROS, acetylation of histones, activation of p38 + JNK, or cytotoxicity in nonmalignant cells. Romidepsin + fenretinide achieved synergistic activity in preclinical models of TCLMs, but not in nonmalignant cells, via a novel molecular mechanism. These data support conducting clinical trials of romidepsin + fenretinide in relapsed and refractory TCLMs. Mol Cancer Ther; 16(4); 649-61. ©2017 AACR.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Depsipéptidos/administración & dosificación , Fenretinida/administración & dosificación , Leucemia-Linfoma de Células T del Adulto/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Acetilación/efectos de los fármacos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular Tumoral , Depsipéptidos/metabolismo , Sinergismo Farmacológico , Fenretinida/farmacología , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Leucemia-Linfoma de Células T del Adulto/metabolismo , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA