Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Pathog ; 17(7): e1009671, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34293041

RESUMEN

Allosteric integrase inhibitors (ALLINIs) are a class of experimental anti-HIV agents that target the noncatalytic sites of the viral integrase (IN) and interfere with the IN-viral RNA interaction during viral maturation. Here, we report a highly potent and safe pyrrolopyridine-based ALLINI, STP0404, displaying picomolar IC50 in human PBMCs with a >24,000 therapeutic index against HIV-1. X-ray structural and biochemical analyses revealed that STP0404 binds to the host LEDGF/p75 protein binding pocket of the IN dimer, which induces aberrant IN oligomerization and blocks the IN-RNA interaction. Consequently, STP0404 inhibits proper localization of HIV-1 RNA genomes in viral particles during viral maturation. Y99H and A128T mutations at the LEDGF/p75 binding pocket render resistance to STP0404. Extensive in vivo pharmacological and toxicity investigations demonstrate that STP0404 harbors outstanding therapeutic and safety properties. Overall, STP0404 is a potent and first-in-class ALLINI that targets LEDGF/p75 binding site and has advanced to a human trial.


Asunto(s)
Inhibidores de Integrasa VIH/farmacología , VIH-1/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Perros , Infecciones por VIH/tratamiento farmacológico , Humanos , Ratas , Ratas Sprague-Dawley , Replicación Viral/efectos de los fármacos
2.
Retrovirology ; 18(1): 37, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34809662

RESUMEN

BACKGROUND: During HIV-1 maturation, Gag and Gag-Pol polyproteins are proteolytically cleaved and the capsid protein polymerizes to form the honeycomb capsid lattice. HIV-1 integrase (IN) binds the viral genomic RNA (gRNA) and impairment of IN-gRNA binding leads to mis-localization of the nucleocapsid protein (NC)-condensed viral ribonucleoprotein complex outside the capsid core. IN and NC were previously demonstrated to bind to the gRNA in an orthogonal manner in virio; however, the effect of IN binding alone or simultaneous binding of both proteins on gRNA structure is not yet well understood. RESULTS: Using crosslinking-coupled selective 2'-hydroxyl acylation analyzed by primer extension (XL-SHAPE), we characterized the interaction of IN and NC with the HIV-1 gRNA 5'-untranslated region (5'-UTR). NC preferentially bound to the packaging signal (Psi) and a UG-rich region in U5, irrespective of the presence of IN. IN alone also bound to Psi but pre-incubation with NC largely abolished this interaction. In contrast, IN specifically bound to and affected the nucleotide (nt) dynamics of the apical loop of the transactivation response element (TAR) and the polyA hairpin even in the presence of NC. SHAPE probing of the 5'-UTR RNA in virions produced from allosteric IN inhibitor (ALLINI)-treated cells revealed that while the global secondary structure of the 5'-UTR remained unaltered, the inhibitor treatment induced local reactivity differences, including changes in the apical loop of TAR that are consistent with the in vitro results. CONCLUSIONS: Overall, the binding interactions of NC and IN with the 5'-UTR are largely orthogonal in vitro. This study, together with previous probing experiments, suggests that IN and NC binding in vitro and in virio lead to only local structural changes in the regions of the 5'-UTR probed here. Accordingly, disruption of IN-gRNA binding by ALLINI treatment results in local rather than global secondary structure changes of the 5'-UTR in eccentric virus particles.


Asunto(s)
Infecciones por VIH/virología , Integrasa de VIH/metabolismo , VIH-1/fisiología , ARN Viral/química , ARN Viral/metabolismo , Virión/fisiología , Regiones no Traducidas 5' , Regulación Viral de la Expresión Génica , Genoma Viral , Integrasa de VIH/genética , VIH-1/química , VIH-1/genética , Humanos , Conformación de Ácido Nucleico , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo , ARN Viral/genética , Secuencia de Empaquetamiento Viral , Virión/química , Virión/genética , Ensamble de Virus
3.
J Biol Chem ; 293(34): 12992-13005, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-29976753

RESUMEN

The internal N6-methyladenosine (m6A) modification of cellular mRNA regulates post-transcriptional gene expression. The YTH domain family proteins (YTHDF1-3 or Y1-3) bind to m6A-modified cellular mRNAs and modulate their metabolism and processing, thereby affecting cellular protein translation. We previously reported that HIV-1 RNA contains the m6A modification and that Y1-3 proteins inhibit HIV-1 infection by decreasing HIV-1 reverse transcription activity. Here, we investigated the mechanisms of Y1-3-mediated inhibition of HIV-1 infection in target cells and the effect of Y1-3 on viral production levels in virus-producing cells. We found that Y1-3 protein overexpression in HIV-1 target cells decreases viral genomic RNA (gRNA) levels and inhibits both early and late reverse transcription. Purified recombinant Y1-3 proteins preferentially bound to the m6A-modified 5' leader sequence of gRNA compared with its unmodified RNA counterpart, consistent with the strong binding of Y1-3 proteins to HIV-1 gRNA in infected cells. HIV-1 mutants with two altered m6A modification sites in the 5' leader sequence of gRNA exhibited significantly lower infectivity than WT, replication-competent HIV-1, confirming that these sites alter viral infection. HIV-1 produced from cells in which endogenous Y1, Y3, or Y1-3 proteins were knocked down singly or together had increased viral infectivity compared with HIV-1 produced in control cells. Interestingly, we found that Y1-3 proteins and HIV-1 Gag protein formed a complex with RNA in HIV-1-producing cells. Overall, these results indicate that Y1-3 proteins inhibit HIV-1 infection and provide new insights into the mechanisms by which the m6A modification of HIV-1 RNA affects viral replication.


Asunto(s)
Adenosina/análogos & derivados , Productos del Gen gag/metabolismo , Infecciones por VIH/virología , VIH-1/crecimiento & desarrollo , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Virión/crecimiento & desarrollo , Adenosina/metabolismo , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Células HeLa , Humanos , Unión Proteica , Virión/metabolismo , Internalización del Virus
4.
J Biol Chem ; 292(48): 19814-19825, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28972144

RESUMEN

The pyridine-based multimerization selective HIV-1 integrase (IN) inhibitors (MINIs) are a distinct subclass of allosteric IN inhibitors. MINIs potently inhibit HIV-1 replication during virion maturation by inducing hyper- or aberrant IN multimerization but are largely ineffective during the early steps of viral replication. Here, we investigated the mechanism for the evolution of a triple IN substitution (T124N/V165I/T174I) that emerges in cell culture with a representative MINI, KF116. We show that HIV-1 NL4-3(IN T124N/V165I/T174I) confers marked (>2000-fold) resistance to KF116. Two IN substitutions (T124N/T174I) directly weaken inhibitor binding at the dimer interface of the catalytic core domain but at the same time markedly impair HIV-1 replication capacity. Unexpectedly, T124N/T174I IN substitutions inhibited proteolytic processing of HIV-1 polyproteins Gag and Gag-Pol, resulting in immature virions. Strikingly, the addition of the third IN substitution (V165I) restored polyprotein processing, virus particle maturation, and significant levels of replication capacity. These results reveal an unanticipated role of IN for polyprotein proteolytic processing during virion morphogenesis. The complex evolutionary pathway for the emergence of resistant viruses, which includes the need for the compensatory V165I IN substitution, highlights a relatively high genetic barrier exerted by MINI KF116. Additionally, we have solved the X-ray structure of the drug-resistant catalytic core domain protein, which provides means for rational development of second-generation MINIs.


Asunto(s)
Productos del Gen gag/metabolismo , Productos del Gen pol/metabolismo , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/metabolismo , VIH-1/efectos de los fármacos , Piridinas/química , Cristalografía por Rayos X , Farmacorresistencia Viral , Células HEK293 , Inhibidores de Integrasa VIH/química , VIH-1/metabolismo , Humanos , Proteolisis , Resonancia por Plasmón de Superficie
5.
J Virol ; 91(17)2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28615207

RESUMEN

Recent evidence indicates that inhibition of HIV-1 integrase (IN) binding to the viral RNA genome by allosteric integrase inhibitors (ALLINIs) or through mutations within IN yields aberrant particles in which the viral ribonucleoprotein complexes (vRNPs) are eccentrically localized outside the capsid lattice. These particles are noninfectious and are blocked at an early reverse transcription stage in target cells. However, the basis of this reverse transcription defect is unknown. Here, we show that the viral RNA genome and IN from ALLINI-treated virions are prematurely degraded in target cells, whereas reverse transcriptase remains active and stably associated with the capsid lattice. The aberrantly shaped cores in ALLINI-treated particles can efficiently saturate and be degraded by a restricting TRIM5 protein, indicating that they are still composed of capsid proteins arranged in a hexagonal lattice. Notably, the fates of viral core components follow a similar pattern in cells infected with eccentric particles generated by mutations within IN that inhibit its binding to the viral RNA genome. We propose that IN-RNA interactions allow packaging of both the viral RNA genome and IN within the protective capsid lattice to ensure subsequent reverse transcription and productive infection in target cells. Conversely, disruption of these interactions by ALLINIs or mutations in IN leads to premature degradation of both the viral RNA genome and IN, as well as the spatial separation of reverse transcriptase from the viral genome during early steps of infection.IMPORTANCE Recent evidence indicates that HIV-1 integrase (IN) plays a key role during particle maturation by binding to the viral RNA genome. Inhibition of IN-RNA interactions yields aberrant particles with the viral ribonucleoprotein complexes (vRNPs) eccentrically localized outside the conical capsid lattice. Although these particles contain all of the components necessary for reverse transcription, they are blocked at an early reverse transcription stage in target cells. To explain the basis of this defect, we tracked the fates of multiple viral components in infected cells. Here, we show that the viral RNA genome and IN in eccentric particles are prematurely degraded, whereas reverse transcriptase remains active and stably associated within the capsid lattice. We propose that IN-RNA interactions ensure the packaging of both vRNPs and IN within the protective capsid cores to facilitate subsequent reverse transcription and productive infection in target cells.


Asunto(s)
Cápside/metabolismo , Proteínas Portadoras/metabolismo , Genoma Viral , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/metabolismo , Transcriptasa Inversa del VIH/metabolismo , Animales , Factores de Restricción Antivirales , Células CHO , Cricetulus , Células HEK293 , VIH-1/efectos de los fármacos , VIH-1/genética , Humanos , ARN Viral/genética , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Ensamble de Virus/efectos de los fármacos
6.
J Biol Chem ; 291(45): 23569-23577, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27645997

RESUMEN

HIV-1 integrase (IN) is essential for virus replication and represents an important multifunctional therapeutic target. Recently discovered quinoline-based allosteric IN inhibitors (ALLINIs) potently impair HIV-1 replication and are currently in clinical trials. ALLINIs exhibit a multimodal mechanism of action by inducing aberrant IN multimerization during virion morphogenesis and by competing with IN for binding to its cognate cellular cofactor LEDGF/p75 during early steps of HIV-1 infection. However, quinoline-based ALLINIs impose a low genetic barrier for the evolution of resistant phenotypes, which highlights a need for discovery of second-generation inhibitors. Using crystallographic screening of a library of 971 fragments against the HIV-1 IN catalytic core domain (CCD) followed by a fragment expansion approach, we have identified thiophenecarboxylic acid derivatives that bind at the CCD-CCD dimer interface at the principal lens epithelium-derived growth factor (LEDGF)/p75 binding pocket. The most active derivative (5) inhibited LEDGF/p75-dependent HIV-1 IN activity in vitro with an IC50 of 72 µm and impaired HIV-1 infection of T cells at an EC50 of 36 µm The identified lead compound, with a relatively small molecular weight (221 Da), provides an optimal building block for developing a new class of inhibitors. Furthermore, although structurally distinct thiophenecarboxylic acid derivatives target a similar pocket at the IN dimer interface as the quinoline-based ALLINIs, the lead compound, 5, inhibited IN mutants that confer resistance to quinoline-based compounds. Collectively, our findings provide a plausible path for structure-based development of second-generation ALLINIs.


Asunto(s)
Infecciones por VIH/tratamiento farmacológico , Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/metabolismo , VIH-1/efectos de los fármacos , Tiofenos/química , Tiofenos/farmacología , Regulación Alostérica/efectos de los fármacos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Dominio Catalítico/efectos de los fármacos , Cristalografía por Rayos X , Descubrimiento de Drogas , Células HEK293 , Infecciones por VIH/virología , Integrasa de VIH/química , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular
7.
Bioorg Med Chem Lett ; 26(19): 4748-4752, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27568085

RESUMEN

Employing a scaffold hopping approach, a series of allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) have been synthesized based on an indole scaffold. These compounds incorporate the key elements utilized in quinoline-based ALLINIs for binding to the IN dimer interface at the principal LEDGF/p75 binding pocket. The most potent of these compounds displayed good activity in the LEDGF/p75 dependent integration assay (IC50=4.5µM) and, as predicted based on the geometry of the five- versus six-membered ring, retained activity against the A128T IN mutant that confers resistance to many quinoline-based ALLINIs.


Asunto(s)
Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/efectos de los fármacos , Indoles/farmacología , Regulación Alostérica , Cristalografía por Rayos X , Inhibidores de Integrasa VIH/química , Enlace de Hidrógeno , Relación Estructura-Actividad
8.
SLAS Discov ; 29(4): 100159, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723666

RESUMEN

To confirm target engagement of hits from our high-throughput screening efforts, we ran biophysical assays on several hundreds of hits from 15 different high-throughput screening campaigns. Analyzing the biophysical assay results from these screening campaigns led us to conclude that we could be more strategic in our biophysical analysis of hits by first confirming activity in a thermal shift assay (TSA) and then confirming activity in either a surface plasmon resonance (SPR) assay or a temperature-related intensity change (TRIC) assay. To understand how this new workflow shapes the quality of the final hits, we compared TSA/SPR or TSA/TRIC confirmed and unconfirmed hits to one another using four measures of compound quality: quantitative estimate of drug-likeness (QED), Pan-Assay Interference Compounds (PAINS), promiscuity, and aqueous solubility. In general, we found that the biophysically confirmed hits performed better in the compound quality metrics than the unconfirmed hits, demonstrating that our workflow not only confirmed target engagement of the hits but also enriched for higher quality hits.


Asunto(s)
Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Bibliotecas de Moléculas Pequeñas , Resonancia por Plasmón de Superficie , Flujo de Trabajo , Ensayos Analíticos de Alto Rendimiento/métodos , Bibliotecas de Moléculas Pequeñas/química , Descubrimiento de Drogas/métodos , Humanos
9.
ACS Omega ; 7(5): 4482-4491, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35155940

RESUMEN

Human immunodeficiency virus-1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome (AIDS). HIV-1, like all retroviruses, stably integrates its vDNA copy into host chromatin, a process allowing for permanent infection. This essential step for HIV-1 replication is catalyzed by viral integrase (IN) and aided by cellular protein LEDGF/p75. In addition, IN is also crucial for proper virion maturation as it interacts with the viral RNA genome to ensure encapsulation of ribonucleoprotein complexes within the protective capsid core. These key functions make IN an attractive target for the development of inhibitors with various mechanisms of action. We conducted a high-throughput screen (HTS) of ∼370,000 compounds using a homogeneous time-resolved fluorescence-based assay capable of capturing diverse inhibitors targeting multifunctional IN. Our approach revealed chemical scaffolds containing diketo acid moieties similar to IN strand transfer inhibitors (INSTIs) as well as novel compounds distinct from all current IN inhibitors including INSTIs and allosteric integrase inhibitors (ALLINIs). Specifically, our HTS resulted in the discovery of compound 12, with a novel IN inhibitor scaffold amenable for chemical modification. Its more potent derivative 14e similarly inhibited catalytic activities of WT and mutant INs containing archetypical INSTI- and ALLINI-derived resistant substitutions. Further SAR-based optimization resulted in compound 22 with an antiviral EC50 of ∼58 µM and a selectivity index of >8500. Thus, our studies identified a novel small-molecule scaffold for inhibiting HIV-1 IN, which provides a promising platform for future development of potent antiviral agents to complement current HIV-1 therapies.

10.
Elife ; 92020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32960169

RESUMEN

A large number of human immunodeficiency virus 1 (HIV-1) integrase (IN) alterations, referred to as class II substitutions, exhibit pleiotropic effects during virus replication. However, the underlying mechanism for the class II phenotype is not known. Here we demonstrate that all tested class II IN substitutions compromised IN-RNA binding in virions by one of the three distinct mechanisms: (i) markedly reducing IN levels thus precluding the formation of IN complexes with viral RNA; (ii) adversely affecting functional IN multimerization and consequently impairing IN binding to viral RNA; and (iii) directly compromising IN-RNA interactions without substantially affecting IN levels or functional IN multimerization. Inhibition of IN-RNA interactions resulted in the mislocalization of viral ribonucleoprotein complexes outside the capsid lattice, which led to premature degradation of the viral genome and IN in target cells. Collectively, our studies uncover causal mechanisms for the class II phenotype and highlight an essential role of IN-RNA interactions for accurate virion maturation.


Asunto(s)
Genoma Viral/genética , Infecciones por VIH/virología , Integrasa de VIH/metabolismo , VIH-1/enzimología , ARN Viral/metabolismo , Virión/enzimología , Replicación Viral , Cápside/metabolismo , Células HEK293 , Integrasa de VIH/genética , VIH-1/genética , VIH-1/crecimiento & desarrollo , VIH-1/fisiología , Humanos , Fenotipo , Unión Proteica , Multimerización de Proteína , Ribonucleoproteínas/metabolismo , Virión/genética , Virión/crecimiento & desarrollo , Virión/fisiología , Integración Viral
11.
Antiviral Res ; 174: 104671, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31812637

RESUMEN

The management of Human Immunodeficiency Virus type 1 (HIV-1) infection requires life-long treatment that is associated with chronic toxicity and possible selection of drug-resistant strains. A new opportunity for drug intervention is offered by antivirals that act as allosteric inhibitors targeting two viral functions (dual inhibitors). In this work, we investigated the effects of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) derivatives on both HIV-1 Integrase (IN) and Reverse Transcriptase associated Ribonuclease H (RNase H) activities. Among the tested compounds, the dihydroxyindole-carboxamide 5 was able to inhibit in the low micromolar range (1-18 µM) multiple functions of IN, including functional IN-IN interactions, IN-LEDGF/p75 binding and IN catalytic activity. Docking and site-directed mutagenesis studies have suggested that compound 5 binds to a previously described HIV-1 IN allosteric pocket. These observations indicate that 5 is structurally and mechanistically distinct from the published allosteric HIV-1 IN inhibitors. Moreover, compound 5 also inhibited HIV-1 RNase H function, classifying this molecule as a dual HIV-1 IN and RNase H inhibitor able to impair the HIV-1 virus replication in cell culture. Overall, we identified a new scaffold as a suitable platform for the development of novel dual HIV-1 inhibitors.


Asunto(s)
Ácidos Carboxílicos/farmacología , Inhibidores de Integrasa VIH/farmacología , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-1/efectos de los fármacos , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Ácidos Carboxílicos/química , Línea Celular , Descubrimiento de Drogas , Infecciones por VIH/virología , Integrasa de VIH/metabolismo , Inhibidores de Integrasa VIH/química , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
12.
ACS Med Chem Lett ; 10(2): 215-220, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30783506

RESUMEN

Allosteric HIV-1 integrase inhibitors (ALLINIs) are a new class of potential antiretroviral therapies with a unique mechanism of action and drug resistance profile. To further extend this class of inhibitors via a scaffold hopping approach, we have synthesized a series of analogues possessing an isoquinoline ring system. Lead compound 6l binds in the v-shaped pocket at the IN dimer interface and is highly selective for promoting higher-order multimerization of inactive IN over inhibiting IN-LEDGF/p75 binding. Importantly, 6l potently inhibited HIV-1NL4-3 (A128T IN), which confers marked resistance to archetypal quinoline-based ALLINIs. Thermal degradation studies indicated that at elevated temperatures the acetic acid side chain of specific isoquinoline derivatives undergo decarboxylation reactions. This reactivity has implications for the synthesis of various ALLINI analogues.

13.
Elife ; 82019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31120420

RESUMEN

Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are a promising new class of antiretroviral agents that disrupt proper viral maturation by inducing hyper-multimerization of IN. Here we show that lead pyridine-based ALLINI KF116 exhibits striking selectivity for IN tetramers versus lower order protein oligomers. IN structural features that are essential for its functional tetramerization and HIV-1 replication are also critically important for KF116 mediated higher-order IN multimerization. Live cell imaging of single viral particles revealed that KF116 treatment during virion production compromises the tight association of IN with capsid cores during subsequent infection of target cells. We have synthesized the highly active (-)-KF116 enantiomer, which displayed EC50 of ~7 nM against wild type HIV-1 and ~10 fold higher, sub-nM activity against a clinically relevant dolutegravir resistant mutant virus suggesting potential clinical benefits for complementing dolutegravir therapy with pyridine-based ALLINIs.


HIV-1 inserts its genetic code into human genomes, turning healthy cells into virus factories. To do this, the virus uses an enzyme called integrase. Front-line treatments against HIV-1 called "integrase strand-transfer inhibitors" stop this enzyme from working. These inhibitors have helped to revolutionize the treatment of HIV/AIDS by protecting the cells from new infections. But, the emergence of drug resistance remains a serious problem. As the virus evolves, it changes the shape of its integrase protein, substantially reducing the effectiveness of the current therapies. One way to overcome this problem is to develop other therapies that can kill the drug resistant viruses by targeting different parts of the integrase protein. It should be much harder for the virus to evolve the right combination of changes to escape two or more treatments at once. A promising class of new compounds are "allosteric integrase inhibitors". These chemical compounds target a part of the integrase enzyme that the other treatments do not yet reach. Rather than stopping the integrase enzyme from inserting the viral code into the human genome, the new inhibitors make integrase proteins clump together and prevent the formation of infectious viruses. At the moment, these compounds are still experimental. Before they are ready for use in people, researchers need to better understand how they work, and there are several open questions to answer. Integrase proteins work in groups of four and it is not clear how the new compounds make the integrases form large clumps, or what this does to the virus. Understanding this should allow scientists to develop improved versions of the drugs. To answer these questions, Koneru et al. first examined two of the new compounds. A combination of molecular analysis and computer modelling revealed how they work. The compounds link many separate groups of four integrases with each other to form larger and larger clumps, essentially a snowball effect. Live images of infected cells showed that the clumps of integrase get stuck outside of the virus's protective casing. This leaves them exposed, allowing the cell to destroy the integrase enzymes. Koneru et al. also made a new compound, called (-)-KF116. Not only was this compound able to tackle normal HIV-1, it could block viruses resistant to the other type of integrase treatment. In fact, in laboratory tests, it was 10 times more powerful against these resistant viruses. Together, these findings help to explain how allosteric integrase inhibitors work, taking scientists a step closer to bringing them into the clinic. In the future, new versions of the compounds, like (-)-KF116, could help to tackle drug resistance in HIV-1.


Asunto(s)
Antivirales/farmacología , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/metabolismo , Multimerización de Proteína , Piridinas/farmacología , Regulación Alostérica/efectos de los fármacos , Antivirales/química , Células HEK293 , Integrasa de VIH/química , Inhibidores de Integrasa VIH/química , Células HeLa , Humanos , Modelos Moleculares , Dominios Proteicos , Piridinas/química , Estereoisomerismo
14.
Sci Rep ; 6: 32499, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27581352

RESUMEN

Human defensins are innate immune defense peptides with a remarkably broad repertoire of anti-pathogen activities. In addition to modulating immune response, inflammation, and angiogenesis, disintegrating bacterial membranes, and inactivating bacterial toxins, defensins are known to intercept various viruses at different stages of their life cycles, while remaining relatively benign towards human cells and proteins. Recently we have found that human defensins inactivate proteinaceous bacterial toxins by taking advantage of their low thermodynamic stability and acting as natural "anti-chaperones", i.e. destabilizing the native conformation of the toxins. In the present study we tested various proteins produced by several viruses (HIV-1, PFV, and TEV) and found them to be susceptible to destabilizing effects of human α-defensins HNP-1 and HD-5 and the synthetic θ-defensin RC-101, but not ß-defensins hBD-1 and hBD-2 or structurally related plant-derived peptides. Defensin-induced unfolding promoted exposure of hydrophobic groups otherwise confined to the core of the viral proteins. This resulted in precipitation, an enhanced susceptibility to proteolytic cleavage, and a loss of viral protein activities. We propose, that defensins recognize and target a common and essential physico-chemical property shared by many bacterial toxins and viral proteins - the intrinsically low thermodynamic protein stability.


Asunto(s)
Péptidos/química , Proteínas Virales/química , alfa-Defensinas/química , Precipitación Química , VIH-1/química , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/síntesis química , Potyvirus/química , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Desplegamiento Proteico , Proteolisis , Virus Espumoso de los Simios/química , Termodinámica , alfa-Defensinas/síntesis química , beta-Defensinas/síntesis química , beta-Defensinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA