RESUMEN
Virus genome recoding is an attenuation method that confers genetically stable attenuation by rewriting a virus genome with numerous silent mutations. Prior flavivirus genome recoding attempts utilised codon deoptimisation approaches. However, these codon deoptimisation approaches act in a species dependent manner and were unable to confer flavivirus attenuation in mosquito cells or in mosquito animal models. To overcome these limitations, we performed flavivirus genome recoding using the contrary approach of codon optimisation. The genomes of flaviviruses such as dengue virus type 2 (DENV2) and Zika virus (ZIKV) contain functional RNA elements that regulate viral replication. We hypothesised that flavivirus genome recoding by codon optimisation would introduce silent mutations that disrupt these RNA elements, leading to decreased replication efficiency and attenuation. We chose DENV2 and ZIKV as representative flaviviruses and recoded them by codon optimising their genomes for human expression. Our study confirms that this recoding approach of codon optimisation does translate into reduced replication efficiency in mammalian, human, and mosquito cells as well as in vivo attenuation in both mice and mosquitoes. In silico modelling and RNA SHAPE analysis confirmed that DENV2 recoding resulted in the extensive disruption of genomic structural elements. Serial passaging of recoded DENV2 resulted in the emergence of rescue or adaptation mutations, but no reversion mutations. These rescue mutations were unable to rescue the delayed replication kinetics and in vivo attenuation of recoded DENV2, demonstrating that recoding confers genetically stable attenuation. Therefore, our recoding approach is a reliable attenuation method with potential applications for developing flavivirus vaccines.
Asunto(s)
Culicidae , Flavivirus , Infección por el Virus Zika , Virus Zika , Humanos , Animales , Ratones , Flavivirus/genética , Virus Zika/genética , Replicación Viral/genética , Codón , MamíferosRESUMEN
The mosquito-borne Zika virus is an emerging pathogen from the Flavivirus genus for which there are no approved antivirals or vaccines. Using the clinically validated PDK-53 dengue virus vaccine strain as a backbone, we created a chimeric dengue/Zika virus, VacDZ, as a live attenuated vaccine candidate against Zika virus. VacDZ demonstrates key markers of attenuation: small plaque phenotype, temperature sensitivity, attenuation of neurovirulence in suckling mice, and attenuation of pathogenicity in interferon deficient adult AG129 mice. VacDZ may be administered as a traditional live virus vaccine, or as a DNA-launched vaccine that produces live VacDZ in vivo after delivery. Both vaccine formulations induce a protective immune response against Zika virus in AG129 mice, which includes neutralising antibodies and a strong Th1 response. This study demonstrates that VacDZ is a safe and effective vaccine candidate against Zika virus.
RESUMEN
Dengue virus, the causative agent for the dengue fever, infects approximately 50-100 million people worldwide per year. The high incidence of dengue fever, along with its potential to develop into a severe, life-threatening form, resulted in great interest in the discovery of an antiviral against it. In this study, we constructed a DENV2-EGFP infectious clone, established a fluorescence-based, high-throughput screening platform, and conducted a screen for anti-DENV compounds on a flavonoid-derivative library, Amongst the hits identified, ST081006 was found to be a strong inhibitor of the DENV replication. Time-course studies suggest that the presence of ST081006 is necessary to inhibit successive rounds of virus replication. Further investigations demonstrated that ST081006 affects the synthesis of both viral protein and viral RNA, and one anti-DENV mechanism is the direct inhibition of viral protein synthesis. The replication of all dengue serotypes, along with that of the enterovirus EV-A71, was shown to be affected by ST081006. Attempts to generate ST081006-resistant DENV were unsuccessful, and thus hints at host factors as potential drug target. Together, these results suggest that ST081006 affect DENV replication, likely by acting on a target involved in the viral protein and/or RNA synthesis pathway.