Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 734: 150479, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39088982

RESUMEN

It is crucial to develop novel antidepressants. Dexmedetomidine (DEX) can exert antidepressant effects, but its underlying mechanism remains unclear. We used chronic restraint stress (CRS) to induce depression-like behaviour in mice and administered low-dose DEX (2 µg/kg per day) during CRS modelling or one injection of high-dose DEX (20 µg/kg) after CRS. The results of the behavioural tests revealed that both methods ameliorated CRS-induced depression. The brain slices of the mice were subjected to immunohistochemical staining for c-fos and phosphorylated ERK (pERK). Results showed that the continuous low-dose DEX-treated group, but not the single high-dose DEX-treated group expressed less c-fos in the nucleus locus coeruleus (LC) with a mean optical density (MOD) of 0.06. Other brain regions, including the dentate gyrus (DG), pyriform cortex (Pir), anterior part of paraventricular thalamic nucleus (PVA), arcuate nucleus (Arc), and core or shell of accumbens nucleus (Acbc or Acbs), presented differences in c-fos expression. In contrast, the low-dose DEX-treated group exhibited three-fold greater pERK expression in the LC of the CRS mice, with a MOD of 0.15. Pir, cingulate cortex (Cg) and, anterior and posterior part of paraventricular thalamic nucleus (PVA and PVP) exhibited pERK expression differences due to distinct reagent treatments. These changes indicate that the responses of brain regions to different DEX administration methods and doses vary. This study confirmed the ability of DEX to ameliorate CRS-induced depression and identified candidate target brain regions, thus providing new information for the antidepressant mechanism of DEX.

2.
BMC Genomics ; 24(1): 720, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017403

RESUMEN

BACKGROUND: Numerous factors influence the growth and development of cashmere. Existing research on cashmere has predominantly emphasized a single omics level. Integrating multi-omics analyses can offer a more comprehensive understanding by encompassing the entire spectrum. This study more accurately and comprehensively identified the key factors influencing cashmere fineness using multi-omics analysis. METHODS: This study used skin tissues of coarse cashmere type (CT_LCG) and fine cashmere type Liaoning cashmere goats (FT_LCG) for the analysis. This study employed an integrated approach involving transcriptomics, translatomics, proteomics, and metabolomics to identify substances associated with cashmere fineness. The findings were validated using parallel reaction monitoring (PRM) and multiple reaction monitoring (MRM) techniques. RESULTS: The GO functional enrichment analysis identified three common terms: multicellular organismal process, immune system process, and extracellular region. Furthermore, the KEGG enrichment analysis uncovered the involvement of the arachidonic acid metabolic pathway. Protein expression trends were verified using PRM technology. The expression trends of KRT79, as confirmed by PRM, were consistent with those observed in TMT proteomics and exhibited a positive regulatory effect on cashmere fineness. Metabolite expression trends were confirmed using MRM technology. The expression trends of 9 out of 15 validated metabolites were in agreement with those identified in the non-targeted metabolomics analysis. CONCLUSIONS: This study employed multi-omics analysis to identify key regulators of cashmere fineness, including PLA2G12A, KRT79, and prostaglandin B2. The findings of this study offer valuable data and establish a theoretical foundation for conducting comprehensive investigations into the molecular regulatory mechanisms and functional aspects of cashmere fineness.


Asunto(s)
Multiómica , Piel , Animales , Piel/metabolismo , Cabras/genética
3.
Sensors (Basel) ; 23(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37571525

RESUMEN

The internal structure of wind turbines is intricate and precise, although the challenging working conditions often give rise to various operational faults. This study aims to address the limitations of traditional machine learning algorithms in wind turbine fault detection and the imbalance of positive and negative samples in the fault detection dataset. To achieve the real-time detection of wind turbine group faults and to capture wind turbine fault state information, an enhanced ASL-CatBoost algorithm is proposed. Additionally, a crawling animal search algorithm that incorporates the Tent chaotic mapping and t-distribution mutation strategy is introduced to assess the sensitivity of the ASL-CatBoost algorithm toward hyperparameters and the difficulty of manual hyperparameter setting. The effectiveness of the proposed hyperparameter optimization strategy, termed the TtRSA algorithm, is demonstrated through a comparison of traditional intelligent optimization algorithms using 11 benchmark test functions. When applied to the hyperparameter optimization of the ASL-CatBoost algorithm, the TtRSA-ASL-CatBoost algorithm exhibits notable enhancements in accuracy, recall, and other performance measures compared with the ASL-CatBoost algorithm and other ensemble learning algorithms. The experimental results affirm that the proposed algorithm model improvement strategy effectively enhances the wind turbine fault detection classification recognition rate.

4.
Anal Chem ; 93(51): 17012-17019, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34910467

RESUMEN

Archaea can produce special cellular components such as polyhydroxyalkanoates, carotenoids, rhodopsin, and ether lipids, which have valuable applications in medicine and green energy production. Most of the archaeal species are uncultivated, posing challenges to investigating their biomarker components and biochemical properties. In this study, we applied Raman spectroscopy to examine the biological characteristics of nine archaeal isolates, including halophilic archaea (Haloferax larsenii, Haloarcula argentinensis, Haloferax mediterranei, Halomicrobium mukohataei, Halomicrobium salinus, Halorussus sp., Natrinema gari), thermophilic archaea (Sulfolobus acidocaldarius), and marine group I (MGI) archaea (Nitrosopumilus maritimus). Linear discriminant analysis of the Raman spectra allowed visualization of significant separations among the nine archaeal isolates. Machine-learning classification models based on support vector machine achieved accuracies of 88-100% when classifying the nine archaeal species. The predicted results were validated by DNA sequencing analysis of cells isolated from the mixture by Raman-activated cell sorting. Raman spectra of uncultured archaea (MGII) were also obtained based on Raman spectroscopy and fluorescence in situ hybridization. The results combining multiple Raman-based techniques indicated that MGII may have the ability to produce lipids distinct from other archaeal species. Our study provides a valuable approach for investigating and classifying archaea, especially uncultured species, at the single-cell level.


Asunto(s)
Inteligencia Artificial , Lípidos , Hibridación Fluorescente in Situ , Filogenia , ARN Ribosómico 16S
5.
Environ Microbiol ; 22(7): 2613-2624, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32114713

RESUMEN

The antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in human gut microbiota have significant impact on human health. While high throughput metagenomic sequencing reveals genotypes of microbial communities, the functionality, phenotype and heterogeneity of human gut microbiota are still elusive. In this study, we applied Raman microscopy and deuterium isotope probing (Raman-DIP) to detect metabolic active ARB (MA-ARB) in situ at the single-cell level in human gut microbiota from two healthy adults. We analysed the relative abundances of MA-ARB under different concentrations of amoxicillin, cephalexin, tetracycline, florfenicol and vancomycin. To establish the link between phenotypes and genotypes of the MA-ARB, Raman-activated cell sorting (RACS) was used to sort MA-ARB from human gut microbiota, and mini-metagenomic DNA of the sorted bacteria was amplified, sequenced and analysed. The sorted MA-ARB and their associated ARGs were identified. Our results suggest a strong relation between ARB in human gut microbiota and personal medical history. This study demonstrates that the toolkit of Raman-DIP, RACS and DNA sequencing can be useful to unravel both phenotypes and genotypes of ARB in human gut microbiota at the single-cell level.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Farmacorresistencia Bacteriana/genética , Microbioma Gastrointestinal/efectos de los fármacos , Adulto , Amoxicilina/farmacología , Bacterias/clasificación , Cefalexina/farmacología , Microbioma Gastrointestinal/genética , Humanos , Metagenoma/genética , Metagenómica , Microscopía Óptica no Lineal , Análisis de Secuencia de ADN , Tetraciclina/farmacología , Tianfenicol/análogos & derivados , Tianfenicol/farmacología , Vancomicina/farmacología
7.
Mol Cell Biochem ; 462(1-2): 85-96, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31446614

RESUMEN

Heat shock proteins (HSPs) may be induced by hypoxia and alleviate blood-brain barrier (BBB) damage. The neuroprotective effect of propofol has been reported. We aimed to identify whether propofol induced HSPs expression and protected BBB integrity. Mouse astrocytes and microglia cells were cultured and exposed to hypoxia and propofol. The expression of HSP27, HSP32, HSP70, and HSP90, and the translocation of heat shock factor 1 (HSF1) and Nuclear factor-E2-related factor 2 (Nrf2) were investigated. Mouse brain microvascular endothelial cells, astrocytes, and microglial cells were co-cultured to establish in vitro BBB model, and the effects of hypoxia and propofol as well as HSPs knockdown/overexpression on BBB integrity were measured. Hypoxia (5% O2, 5% CO2, 90% humidity) treatment for 6 h and 12 h induced HSP27, HSP32, and HSP70 expression. Propofol (25 µΜ) increased HSP27 and HSP32 expression, starting with exposure to hypoxia for 3 h. Propofol induced HSF1 translocation from cytoplasmic to nuclear compartment, and blockade of HSF1 inhibited HSP27 expression in mouse astrocytes when they were exposed to hypoxia for 3 h. Propofol induced Nrf2 translocation, and blockade of Nrf2 inhibited HSP32 expression in mouse microglial cells when they were exposed to hypoxia for 3 h. Propofol protected hypoxia-impaired BBB integrity, and the effects were abolished by blockade of HSF1 and Nrf2. Overexpression of HSP27 and HSP32 alleviated hypoxia-impaired BBB integrity, and blockade of HSP27 and HSP32 expression ameliorated propofol-mediated protection against BBB impairment. Propofol may protect hypoxia-mediated BBB impairment. The mechanisms may involve HSF1-mediated HSP27 expression and Nrf2-mediated HSP32 expression.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Proteínas de Choque Térmico/metabolismo , Propofol/farmacología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Permeabilidad , Sustancias Protectoras/farmacología
8.
Ecotoxicol Environ Saf ; 165: 107-114, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30193163

RESUMEN

The feasibility of growing algae in concentrated wastewater generated from sludge ozonation for simultaneous nutrients removal and biomass production was studied. The effects of bacteria addition into microalgae on nutrients removal, biomass yield and settleability, the growth rate of algae and concentrations of extracellular polymeric substances (EPS) and soluble microbial products (SMP) were investigated. The results showed that the growth rate of algae in algal-bacteria system (0.2182) was improved than in algae-only system (0.1852), while both of them are comparable with others reported previously. And the addition of bacteria enhanced COD, NH4+-N, TN and TP removal rate by 23.9 ±â€¯3.3%, 27.7 ±â€¯3.6%, 16.6 ±â€¯1.8% and 14.9 ±â€¯2.2%, respectively. And 32.8 ±â€¯0.7% of the TN and 50.3 ±â€¯1.8% of the TP were recycled from ozonated sludge-supernatant (OSS) being absorbed into algal-bacterial biomass. The algal-bacteria system also demonstrated advantages on biomass settleability and heavy metals removal. Finally, the mechanism involving matter exchange and algal-bacteria system on OSS treatment in this study were discussed through evaluation of nutrients, SMP and EPS contents, nitrogen and phosphorus balance.


Asunto(s)
Bacterias/crecimiento & desarrollo , Biomasa , Reactores Biológicos/microbiología , Microalgas/crecimiento & desarrollo , Aguas del Alcantarillado/química , Compuestos de Amonio/análisis , Nitrógeno/análisis , Oxígeno/metabolismo , Ozono , Fósforo/análisis , Aguas del Alcantarillado/microbiología , Simbiosis , Eliminación de Residuos Líquidos/métodos
9.
Opt Express ; 25(19): 23437-23450, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-29041644

RESUMEN

We propose a model to calculate the thermally induced mode loss evolution in the coiled ytterbium doped large mode area (LMA) fiber. The mode loss evolution in the coiled conventional step index LMA 20/400 fiber is investigated. Meanwhile, a model of fiber amplifier considering thermally induced mode loss evolution is established. The higher order mode (HOM) suppression between a co-pumping scheme and counter-pumping scheme under the heat load are compared. The simulation shows that the HOM loss decreases quasi-exponentially with the heat load and the bending radius of the ytterbium doped fiber (YDF) should be optimized according to the heat load to achieve effectively single mode operation. Besides, the counter-pumping fiber amplifier shows much better HOM suppression than the co-pumping fiber amplifier. The results in this paper will provide guidance in the design of novel ytterbium doped LMA fiber and the optimization of the high power single mode fiber amplifier.

10.
Appl Opt ; 55(5): 1183-9, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26906395

RESUMEN

The transverse-mode evolution in thermally guided (TG) index-antiguided-core (IAGc) fibers is numerically studied in this paper. With the finite-element method and thermal conduction equations, the fundamental mode evolution with a thermal load is investigated, and four evolution stages (i.e., the cladding-confined, quasi-cladding-confined, quasi-core-confined, and core-confined) are revealed. Thermal load thresholds corresponding to these stages are presented. Furthermore, the field evolutions of high-order modes also are investigated; the filling factors of these modes are discussed as well. The pertinent results can provide significant reference for designing TG IAGc fibers and understanding the thermal effect on the transverse mode of fibers involving the index-antiguided core.

11.
Chemosphere ; 362: 142500, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852635

RESUMEN

Antimicrobial resistance (AMR) in oceans poses a significant threat to human health through the seafood supply chain. Ammonia-oxidizing archaea (AOA) are important marine microorganisms and play a key role in the biogeochemical nitrogen cycle around the world. However, the AMR of marine AOA to aquicultural antibiotics is poorly explored. Here, Raman-deuterium isotope probing (Raman-DIP), a single-cell tool, was developed to reveal the AMR of a typical marine species of AOA, Nitrosopumilus maritimus (designated SCM1), against six antibiotics, including erythromycin, tetracycline, novobiocin, neomycin, bacitracin, and vancomycin. The D2O concentration (30% v/v) and culture period (9 days) were optimized for the precise detection of metabolic activity in SCM1 cells through Raman-DIP. The relative metabolic activity of SCM1 upon exposure to antibiotics was semi-quantitatively calculated based on single-cell Raman spectra. SCM1 exhibited high resistance to erythromycin, tetracycline, novobiocin, neomycin, and vancomycin, with minimum inhibitory concentration (MIC) values between 100 and 400 mg/L, while SCM1 is very sensitive to bacitracin (MIC: 0.8 mg/L). Notably, SCM1 cells were completely inactive under the metabolic activity minimum inhibitory concentration conditions (MA-MIC: 1.6-800 mg/L) for the six antibiotics. Further genomic analysis revealed the antibiotic resistance genes (ARGs) of SCM1, including 14 types categorized into 33 subtypes. This work increases our knowledge of the AMR of marine AOA by linking the resistant phenome to the genome, contributing to the risk assessment of AMR in the underexplored ocean environment. As antibiotic resistance in marine microorganisms is significantly affected by the concentration of antibiotics in coastal environments, we encourage more studies concentrating on both the phenotypic and genotypic antibiotic resistance of marine archaea. This may facilitate a comprehensive evaluation of the capacity of marine microorganisms to spread AMR and the implementation of suitable control measures to protect environmental safety and human health.


Asunto(s)
Antibacterianos , Archaea , Antibacterianos/farmacología , Archaea/genética , Archaea/efectos de los fármacos , Archaea/metabolismo , Amoníaco/metabolismo , Pruebas de Sensibilidad Microbiana , Oxidación-Reducción , Análisis de la Célula Individual , Espectrometría Raman , Farmacorresistencia Microbiana/genética
12.
Materials (Basel) ; 17(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38399053

RESUMEN

Cylinder liners, considered a crucial component of internal combustion (IC) engines, often require excellent mechanical properties to ensure optimal engine performance under elevated temperatures, pressures, and varying loads. In this work, a new low-alloy cylinder liner, incorporating a low content of molybdenum, copper, and chromium into gray cast iron, was fabricated using a centrifugal casting process. Subsequently, the heat treatment processes were designed to achieve bainite microstructures in the cylinder liner through rapid air cooling, isothermal transformation, and tempering. The effects of different air-cooling rates and tempering temperatures on the microstructure evolution and mechanical properties of cylinder liner were investigated. The results revealed that during the supercooled austenite transformation process, rapid air cooling at a rate of 14.5-23.3 °C/s can effectively bypass the formation of pearlitic structures and directly induce the formation of bainite structures. Once the temperature exceeded 480-520 °C, hardness and tensile strength increased with the temperature increase owing to the enhancement of the lower bainite content, the reduction of residual austenite, and the precipitation of the fine hard carbides in the matrix. With temperatures above 520-550 °C, the carbide and lower bainite organization coarsened, thereby reducing the hardness and tensile strength of the material. Therefore, the optimal heat treatment parameters were rapid cooling at 14.5-23.3 °C/s rate to obtain bainite, and tempering of 480-520 °C for finer and more uniform bainite. In addition, the results of the characterization of the mechanical properties of the cylinder liner after heat treatment showed that the hardness, tensile strength, and wear resistance were improved with the refinement of the bainite.

13.
Stroke Vasc Neurol ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697767

RESUMEN

BACKGROUND: Local brain tissue can suffer from ischaemia/reperfusion (I/R) injury, which lead to vascular endothelial damage. The peptide δ opioid receptor (δOR) agonist [D-ala2, D-leu5]-Enkephalin (DADLE) can reduce apoptosis caused by acute I/R injury in brain microvascular endothelial cells (BMECs). OBJECTIVE: This study aims to explore the mechanism by which DADLE enhances the level of mitophagy in BMECs by upregulating the expression of transient receptor potential vanilloid subtype 4 (TRPV4). METHODS: BMECs were extracted and made to undergo oxygen-glucose deprivation/reoxygenation (OGD/R) accompanied by DADLE. RNA-seq analysis revealed that DADLE induced increased TRPV4 expression. The CCK-8 method was used to assess the cellular viability; quantitative PCR (qPCR) was used to determine the mRNA expression of Drp1; western blot was used to determine the expression of TRPV4 and autophagy-related proteins; and calcium imaging was used to detect the calcium influx. Autophagosomes in in the cells' mitochondria were observed by using transmission electron microscopy. ELISA was used to measure ATP content, and a JC-1 fluorescent probe was used to detect mitochondrial membrane potential. RESULTS: When compared with the OGD/R group, OGD/R+DADLE group showed significantly enhanced cellular viability; increased expression of TRPV4, Beclin-1, LC3-II/I, PINK1 and Parkin; decreased p62 expression; a marked rise in calcium influx; further increases in mitophagy, an increase in ATP synthesis and an elevation of mitochondrial membrane potential. These protective effects of DADLE can be blocked by a TRPV4 inhibitor HC067047 or RNAi of TRPV4. CONCLUSION: DADLE can promote mitophagy in BMECs through TRPV4, improving mitochondrial function and relieving I/R injury.

14.
Eur J Gastroenterol Hepatol ; 36(6): 720-727, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38625832

RESUMEN

The purpose of this study was to explore the histopathological staging and differential diagnosis of marginal zone lymphoma in gastric mucosa-associated lymphoid tissue (MALT lymphoma). We performed detailed histomorphology and immunohistochemistry investigations as well as genetic testing on endoscopic biopsy and endoscopic mucosal resection specimens from 18 patients with gastric MALT lymphoma. We found that gastric MALT lymphoma typically begins as a small, isolated area outside the lymphoid follicular mantle zone or proliferates in a multifocal, patchy manner, gradually spreads to the interfollicular zone, forming diffuse proliferation, invades the gastric mucosal glands, and infiltrates or proliferates into the center of peripheral reactive lymphoid follicles. Abnormally proliferating lymphocytes invade the surrounding lymphoid follicles, resulting in damage, atrophy, and disappearance of their normal follicles as well as of the gastric mucosa glands, forming diffuse proliferation. Redifferentiation and proliferation lead to the transformation of lymphocytes; that is, MALT transitions into highly invasive lymphoma. Based on our findings in this study, we propose the following five stages in the process of development and progression of gastric MALT lymphoma: the stage of cell proliferation outside the lymphoid follicular mantle zone; the stage of heterogeneous proliferative lymphoepithelial lesion; the stage of reactive lymphoid follicular implantation; the stage of lymphoid follicular clonal proliferation; and the stage of MALT transforming into highly invasive lymphoma. We examined the differential diagnosis of histopathological features at each stage. The clinicopathological staging of gastric MALT lymphoma can help clinicians provide accurate treatment and track malignant cell transformation, thus playing a significant role in controlling its development and progression.


Asunto(s)
Mucosa Gástrica , Linfoma de Células B de la Zona Marginal , Estadificación de Neoplasias , Neoplasias Gástricas , Humanos , Linfoma de Células B de la Zona Marginal/patología , Linfoma de Células B de la Zona Marginal/diagnóstico , Neoplasias Gástricas/patología , Neoplasias Gástricas/diagnóstico , Diagnóstico Diferencial , Femenino , Mucosa Gástrica/patología , Persona de Mediana Edad , Masculino , Anciano , Adulto , Biopsia , Inmunohistoquímica , Proliferación Celular , Anciano de 80 o más Años , Gastroscopía , Resección Endoscópica de la Mucosa , Biomarcadores de Tumor/análisis , Invasividad Neoplásica
15.
J Genet Eng Biotechnol ; 22(2): 100372, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38797546

RESUMEN

The myostatin (MSTN) gene exhibits significant nucleotide sequence variations in sheep, impacting growth characteristics and muscular traits of the body. However, its influence on specific growth traits in some sheep remains to be further elucidated. This study utilized single nucleotide polymorphism sequence analysis to investigate the role of the MSTN gene in meat production performance across four sheep breeds: Charolais sheep, Australian White sheep, crossbreeds of Australian White and Small-tailed Han, and crossbreeds of Charolais and Small-tailed Han. At a SNP locus of the MSTN gene, the C2361T site was identified, with three genotypes detected: CC, CT, and TT, among which CC predominated. Gene substitution effect analysis revealed that replacing C with T could elevate the phenotypic value. Comparative analysis of data from different genotypes within the same breed highlighted the superiority of CC and TT genotypes in phenotypic values, underscoring the significance of specific genotypes in influencing key traits. Contrasting the performance of different genotypes across breeds, Charolais sheep and Charolais Han hybrids demonstrated superiority across multiple indicators, offering valuable insights for breeding new sheep varieties. Analysis of gender effects on growth characteristics indicated that ewes exhibited significantly wider chest, waist, and hip widths compared to rams, while rams displayed better skeletal growth and muscle development. Additionally, the MSTN gene also exerted certain effects on lamb growth characteristics, with the CC genotype closely associated with weight. These findings not only contribute crucial insights for sheep breeding but also pave the way for future research exploring the interaction of this gene with others.

16.
Mol Biotechnol ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117978

RESUMEN

Exploring the landscape of protein phosphorylation, this investigation focuses on skin samples from LCG (Liaoning Cashmere Goats), characterized by different levels of cashmere fineness. Employing LC-MS/MS technology, we meticulously scrutinized FT-LCG (fine-type Liaoning Cashmere Goats) and CT-LCG (coarse-type Liaoning Cashmere Goats). Identifying 512 modified proteins, encompassing 1368 phosphorylated peptide segments and 1376 quantifiable phosphorylation sites, our exploration further revealed consistent phosphorylation sites in both groups. Analysis of phosphorylated peptides unveiled kinase substrates, prominently featuring Protein Kinase C, Protein Kinase B and MAPK3-MAPK1-MAPK7-NLK-group. Differential analysis spotlighted 28 disparate proteins, comprising six upregulated and twenty-two downregulated. Cluster analysis showcased the robust clustering efficacy of the two sample groups. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses underscored the significance of the purine metabolism pathway, suggesting its pivotal role in modulating cashmere fineness in LCG. Notably, through differential protein analysis, two crucial proteins were identified: HSL-X (hormone-sensitive lipase isoform X1) and KPRP (keratinocyte proline-rich protein). Further evidence supports LIPE and KPRP as key genes regulating cashmere fineness, paving the way for promising avenues in further research. These findings not only contribute to a nuanced understanding of protein-level dynamics in cashmere but also provide a theoretical foundation for the selective breeding of superior Liaoning Cashmere Goat strands.

17.
Adv Colloid Interface Sci ; 327: 103145, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615561

RESUMEN

Friction and lubrication are ubiquitous in all kinds of movements and play a vital role in the smooth operation of production machinery. Water is indispensable both in the lubrication systems of natural organisms and in hydration lubrication systems. There exists a high degree of similarity between these systems, which has driven the development of hydration lubrication from biomimetic to artificial manufacturing. In particular, significant advancements have been made in the understanding of the mechanisms of hydration lubrication over the past 30 years. This enhanced understanding has further stimulated the exploration of biomimetic inspiration from natural hydration lubrication systems, to develop novel artificial hydration lubrication systems that are cost-effective, easily transportable, and possess excellent capability. This review summarizes the recent experimental and theoretical advances in the understanding of hydration-lubrication processes. The entire paper is divided into three parts. Firstly, surface interactions relevant to hydration lubrication are discussed, encompassing topics such as hydrogen bonding, hydration layer, electric double layer force, hydration force, and Stribeck curve. The second part begins with an introduction to articular cartilage in biomaterial lubrication, discussing its compositional structure and lubrication mechanisms. Subsequently, three major categories of bio-inspired artificial manufacturing lubricating material systems are presented, including hydrogels, polymer brushes (e.g., neutral, positive, negative and zwitterionic brushes), hydration lubricant additives (e.g., nano-particles, polymers, ionic liquids), and their related lubrication mechanism is also described. Finally, the challenges and perspectives for hydration lubrication research and materials development are presented.

18.
J Orthop Translat ; 45: 107-119, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38524870

RESUMEN

Background: Diabetic foot is a major complication of diabetes. The bone transverse transport method could be applied in clinics for treatment, which could improve the metabolism of the tissues via lasting distraction forces. However, the process' specific regulating mechanism is still unknown. Methods: Based on the notion that the healing of bones involves the recruitment of calcium ions, in this study, we established the model of tibial cortex transverse transport (TTT) on rats and then used tissue immunologic detection, such as the double fluorescent staining to explore the expression of the calcium channels' calcium release-activated calcium modulator 1 (Orai1)/stromal interaction molecule 1 (STIM1), which belong to the store-operated calcium entry (SOCE) signaling pathways on the tissues around the bone transport area. By using the laser capture microdissection (LCM) tool, we acquired samples of tissues around the bone and endeavored to identify pivotal protein molecules. Subsequently, we validated the functions of key protein molecules through in vitro and in vivo experiments. Results: After protein profile analysis, we found the differentially expressed key protein osteopontin (OPN). The in vitro experiments verified that, being stimulated by OPN, the migration, proliferation, and angiogenesis of human umbilical vein endothelial cells (HUVEC) were observed to be enhanced. The activation of Orai1/STIM1 might increase the activity of endothelial nitric oxide synthase (eNOS) and its effect on releasing nitric oxide (NO). Subsequently, the migration and proliferation of the HUVECs are improved, which ultimately accelerates wound healing. These signaling pathway was also observed in the OPN-stimulated healing process of the skin wound surface of diabetic mice. Conclusion: This study identifies the molecular biological mechanism of OPN-benefited the migration and proliferation of the HUVECs and provides ideas for searching for new therapeutic targets for drugs that repair diabetes-induced wounds to replace invasive treatment methods. The translational potential of this article: The OPN is highly expressed in the tissues surrounding the TTT bone transfer area, which may possibly stimulate the activation of eNOS to increase NO release through the SOCE pathway mediated by Orai1/STIM1. This mechanism may play a significant role in the angiogenesis of diabetic foot's wounds promoted by TTT, providing new therapeutic strategies for the non-surgical treatment for this disease.

19.
J Pain Res ; 16: 21-32, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36636265

RESUMEN

Purpose: This study aimed to investigate whether preoperative computerized tomography-guided hookwire localization-associated pain could affect acute and chronic postsurgical pain (CPSP) in patients undergoing video-assisted thoracoscopic surgery (VATS). Methods: We enrolled 161 adult patients who underwent elective VATS; sixty-nine patients experienced hookwire localization (Group A) and 69 did not (Group B). Group A was further subdivided into the multiple localization group (n=35, Group Amultiple) and the single localization group (n=34, Group Asingle) according to the number of hookwires. The numerical rating scale (NRS) was used preoperatively, during recovery at the post-anesthesia care unit (PACU), and the first two days, 3 and 6 months postoperatively. Furthermore, multivariate regression analysis was used to identify the risk factors associated with CPSP. The postoperative adverse events, length of hospital stay, and satisfaction in pain management were also recorded. Results: The incidence and severity of acute postoperative pain were similar between Group A and Group B (p > 0.05). The incidence (56.5% vs 30.4%, p = 0.002) and the NRS scores (2.0 [2.0-3.0] vs 1.0 [1.0-2.0], p = 0.011) for CPSP were significantly higher in Group A than in Group B at 3 months postoperatively. On subgroup analysis, compared with Group Asingle, the intensity of CPSP (2.0 [2.0-3.0] vs 2.0 [1.0-2.0], p = 0.005) in Group Amultiple was slightly higher at 3 months postoperatively. Conversely, the CPSP incidence (60.0% vs 29.4%, p = 0.011) was significantly higher at 6 months postoperatively in Group Amultiple. The multivariate regression analysis further validated hookwire localization as a risk factor for CPSP (odds ratio: 6.199, 95% confidence interval 2.049-18.749, p = 0.001). Patient satisfaction relating to pain management at 3 months postoperatively was lower in Group A (p = 0.034). Conclusion: The preoperative pain stress of hookwire localization increased the incidence and intensity of CPSP rather than acute pain at 3 months postoperatively, especially in patients with multiple hookwires.

20.
J Food Sci ; 88(8): 3357-3372, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37458289

RESUMEN

The nutritional and volatile profiles of pulp and flavedo samples from four distinct local pummelo landraces ("Siji," "Pingshan," "Wendan," and "Guanxi") cultivated in Fujian province of China were investigated. "Guanxi" pummelo exhibited relatively high contents of vitamin C (42.01 mg/100 mL) and phenols (360.61 mg/L) and displayed a robust antioxidant capacity (41.15 mg/100 mL). Conversely, the red pulp from "Pingshan" demonstrated relatively high values of carotenoids (55.96 µg/g) and flavonoids (79.79 mg/L). Considerable differences were observed in volatile compositions between the two fruit tissues and among the four genotypes. A total of 166 and 255 volatile compounds were detected in the pulp and flavedo samples, respectively. Notably, limonene and ß-myrcene were identified as the principal volatile compounds in flavedo, whereas hexanal was highly abundant in the pulp of "Siji," "Pingshan," and "Guanxi." "Wendan" displayed distinct separation from the other three pummelo cultivars in principal component analysis based on the pulp volatile compositions. This distinction was attributed to the higher number and content of volatile compounds in "Wendan" pulp, particularly the remarkable enrichment of ß-myrcene. The newly characterized pummelo landraces and genotype/tissue-dependent variations in volatiles provide essential information for the genetic improvement of pummelo aroma, as well as for fruit processing and utilization.


Asunto(s)
Citrus , Compuestos Orgánicos Volátiles , Carotenoides/análisis , Monoterpenos Acíclicos , Flavonoides , Frutas/química , Compuestos Orgánicos Volátiles/análisis , Citrus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA