Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(5): 1487-1493, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38285518

RESUMEN

van der Waals materials provide a versatile toolbox for the emergence of new quantum phenomena and fabrication of functional heterostructures. Among them, the trihalide VI3 stands out for its unique magnetic and structural landscape. Here we investigate the spin and orbital magnetic degrees of freedom in the layered ferromagnet VI3 by means of temperature-dependent X-ray absorption spectroscopy and X-ray magnetic circular and linear dichroism. We detect localized electronic states and reduced magnetic dimensionality, due to electronic correlations. We furthermore provide experimental evidence of (a) an unquenched orbital magnetic moment (up to 0.66(7) µB/V atom) in the ferromagnetic state and (b) an instability of the orbital moment in the proximity of the spin reorientation transition. Our results support a coherent picture where electronic correlations give rise to a strong magnetic anisotropy and a large orbital moment and establish VI3 as a prime candidate for the study of orbital quantum effects.

2.
Nano Lett ; 23(17): 8035-8042, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37638737

RESUMEN

Engineering surfaces and interfaces of materials promises great potential in the field of heterostructures and quantum matter designers, with the opportunity to drive new many-body phases that are absent in the bulk compounds. Here, we focus on the magnetic Weyl kagome system Co3Sn2S2 and show how for the terminations of different samples the Weyl points connect differently, still preserving the bulk-boundary correspondence. Scanning tunneling microscopy has suggested such a scenario indirectly, and here, we probe the Fermiology of Co3Sn2S2 directly, by linking it to its real space surface distribution. By combining micro-ARPES and first-principles calculations, we measure the energy-momentum spectra and the Fermi surfaces of Co3Sn2S2 for different surface terminations and show the existence of topological features depending on the top-layer electronic environment. Our work helps to define a route for controlling bulk-derived topological properties by means of surface electrostatic potentials, offering a methodology for using Weyl kagome metals in responsive magnetic spintronics.

3.
Nano Lett ; 22(17): 7034-7041, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36039834

RESUMEN

Two-dimensional van der Waals magnetic semiconductors display emergent chemical and physical properties and hold promise for novel optical, electronic and magnetic "few-layers" functionalities. Transition-metal iodides such as CrI3 and VI3 are relevant for future electronic and spintronic applications; however, detailed experimental information on their ground state electronic properties is lacking often due to their challenging chemical environment. By combining X-ray electron spectroscopies and first-principles calculations, we report a complete determination of CrI3 and VI3 electronic ground states. We show that the transition metal-induced orbital filling drives the stabilization of distinct electronic phases: a wide bandgap in CrI3 and a Mott insulating state in VI3. Comparison of surface-sensitive (angular-resolved photoemission spectroscopy) and bulk-sensitive (X-ray absorption spectroscopy) measurements in VI3 reveals a surface-only V2+ oxidation state, suggesting that ground state electronic properties are strongly influenced by dimensionality effects. Our results have direct implications in band engineering and layer-dependent properties of two-dimensional systems.

4.
Inorg Chem ; 61(9): 3981-3988, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35192320

RESUMEN

MnPd5Se, a derivative of the anti-CeCoIn5-type phase, was synthesized from a high-temperature solid-state reaction, structurally determined by X-ray diffraction, and magnetically characterized with a combined magnetic measurement and neutron powder diffraction (NPD). According to the X-ray diffraction results, MnPd5Se crystallizes in a layered tetragonal structure with the same space group as CeCoIn5, P4/mmm (No. 123). MnPd5Se shows antiferromagnetic ordering around 80 K on the basis of the magnetic property measurements. An A-type antiferromagnetic structure was revealed from the analysis of neutron powder diffraction results at 300, 50, and 6 K. Moreover, a spin orientation rotation was observed as the temperature decreased. Pd L3 X-ray absorption near edge spectroscopy results for MnPd5Se semiqualitatively correlate with the calculated density of states supporting a nominal 0.2 electron transfer into the Pd d orbital from either Se or Mn in the compound. The discovery of MnPd5Se, along with our previously reported MnT5Pn (T = Pd or Pt; Pn = P or As), provides a tunable system for studying the magnetic ordering from ferromagnetism to antiferromagnetism with the strong spin-orbit coupling effect.

5.
Inorg Chem ; 58(5): 3308-3315, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30762352

RESUMEN

A previously unreported family of electrically insulating rare-earth borates, RbBa R(BO3)2 ( R = Y, Gd-Yb), was designed and then successfully obtained by traditional solid-state reaction. They crystallize in a monoclinic crystal system space group P21 /m (No. 11). They feature triangular planar rare-earth ( R) lattices, which are part of, for example, [Yb(BO3)2]3- infinite 2D layers. These R-based triangular lattices are stacked with layers of crystallographically ordered Rb and Ba atoms to build the 3D structures. Polycrystalline samples of RbBa R(BO3)2 were used to study the elementary magnetic properties, and millimeter-size RbBaYb(BO3)2 single crystals were grown by spontaneous nucleation for further anisotropic magnetic characterization. Antiferromagnetic spin interactions are observed for all magnetic compounds, and no long-range magnetic ordering is found down to 1.8 K. Our results suggest that this RbBa R(BO3)2 ( R = Gd-Yb) family may be of further interest both experimentally and theoretically as highly geometrically frustrated magnets.

6.
Phys Rev Lett ; 121(16): 167203, 2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30387620

RESUMEN

The 1/8 fractional plateau phase (1/8 FPP) in Shastry-Sutherland lattice (SSL) spin systems has been viewed an exemplar of emergence on an Archimedean lattice. Here we explore this phase in the Ising magnet TmB_{4} using high-resolution specific heat (C) and magnetization (M) in the field-temperature plane. We show that the 1/8 FPP is smoothly connected to the antiferromagnetic phase on ramping the field from H=0. Thus, the 1/8 FPP is not a distinct thermodynamic ground state of TmB_{4}. The implication of these results for Heisenberg spins on the SSL is discussed.

7.
Inorg Chem ; 57(7): 3873-3882, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29565119

RESUMEN

The previously unreported RE3Mo14O30 and RE2Mo9O19 phases were synthesized in vacuo from rare-earth oxides, molybdenum oxide, and molybdenum metal using halide fluxes at 875-1000 °C. Both phases adopt structures in the triclinic P1̅ space group albeit with several notable differences. The structures display an ordering of layers along the a direction of the unit cell, forming distinct honeycomb-related lattice arrangements composed of MoO6 octahedra and vacancies. Mo-Mo bonding and clusters are present; the RE3Mo14O30 structure contains Mo dimers and rhomboid tetramers, while the RE2Mo9O19 structure contains rhomboid tetramers and an unusual arrangement of planar tetramers, pentamers, and hexamers. The magnetic measurements found the RE2Mo9O19 phases to be simple paramagnets, while La3Mo14O30 was observed to order antiferromagnetically at 18 K. Electrical resistivity measurements confirmed all of the samples to behave as nondegenerate semiconductors.

8.
Phys Rev Lett ; 117(27): 277001, 2016 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-28084772

RESUMEN

We use high resolution angle resolved photoemission spectroscopy and density functional theory with measured crystal structure parameters to study the electronic properties of CaKFe_{4}As_{4}. In contrast to the related CaFe_{2}As_{2} compounds, CaKFe_{4}As_{4} has a high T_{c} of 35 K at stochiometric composition. This presents a unique opportunity to study the properties of high temperature superconductivity in the iron arsenides in the absence of doping or substitution. The Fermi surface consists of several hole and electron pockets that have a range of diameters. We find that the values of the superconducting gap are nearly isotropic (within the explored portions of the Brillouin zone), but are significantly different for each of the Fermi surface (FS) sheets. Most importantly, we find that the momentum dependence of the gap magnitude plotted across the entire Brillouin zone displays a strong deviation from the simple cos(k_{x})cos(k_{y}) functional form of the gap function, proposed by the scenario of Cooper pairing driven by a short range antiferromagnetic exchange interaction. Instead, the maximum value of the gap is observed on FS sheets that are closest to the ideal nesting condition, in contrast to previous observations in other ferropnictides. These results provide strong support for the multiband character of superconductivity in CaKFe_{4}As_{4}, in which Cooper pairing forms on the electron and the hole bands interacting via a dominant interband repulsive interaction, enhanced by band nesting.

9.
Nat Mater ; 12(8): 714-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23749264

RESUMEN

Examples of stable binary icosahedral quasicrystals are relatively rare, and at present there are no known examples featuring localized magnetic moments. These would represent an ideal model system for attaining a deeper understanding of the nature of magnetic interactions in aperiodic lattices. Here we report the discovery of a family of at least seven rare earth icosahedral binary quasicrystals, i-R-Cd (R = Gd to Tm, Y), six of which bear localized magnetic moments. Our work highlights the importance of carefully motivated searches through phase space and supports the proposal that, like icosahedral Sc12Zn88 (ref. ), binary quasicrystalline phases may well exist nearby known crystalline approximants, perhaps as peritectically forming compounds with very limited liquidus surfaces, offering very limited ranges of composition/temperature for primary solidification.

10.
J Phys Condens Matter ; 36(38)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38870997

RESUMEN

Fe3+δGeTe2(FGT) has proved to be an interesting van der Waals (vdW) ferromagnetic compound with a tunable Curie temperature (TC). However, the underlying mechanism for varyingTCremains elusive. Here, we systematically investigate and compare low-temperature magnetic properties of single crystalline FGT samples that exhibitTCs ranging from 160 K to 205 K. Spin stiffness (D) and spin excitation gap (Δ) are extracted using Bloch's theory for crystals with varying Fe content. Compared to Cr-based vdW ferromagnets, FGT compounds have higher spin stiffness values but lower spin wave excitation gaps. We discuss the implication of these relationships in Fe-Fe ion magnetic interactions in FGT unit cells. The itinerancy of magnetic electrons is measured and discussed under the Rhodes-Wohlfarth ratio (RWR) and the Takahashi theory.

11.
J Phys Condens Matter ; 36(34)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38768610

RESUMEN

Single crystals of U2Mn3Ge and U2Fe3Ge with a Kagome lattice structure were synthesized using a high-temperature self-flux crystal growth method. The physical properties of these crystals were characterized through measurements of resistivity, magnetism, and specific heat. U2Fe3Ge exhibits ferromagnetic ground state and anomalous Hall effect, and U2Mn3Ge demonstrates a complex magnetic structure. Both compounds exhibit large Sommerfeld coefficient, indicating coexistence of heavy Fermion behaviour with magnetism. Our results suggest that this U2TM3Ge (TM = Mn, Fe, Co) family is a promising platform to investigate the interplay of magnetism, Kondo physics and the Kagome lattice.

12.
Nat Commun ; 14(1): 3641, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37336899

RESUMEN

A 2-Q antiferromagnetic order of the ferromagnetic dimers was found below TN = 2.9 K in the Shastry-Sutherland lattice BaNd2ZnS5 by single crystal neutron diffraction. The magnetic order can be understood by the orthogonal arrangement of local Ising Nd spins, identified by polarized neutrons. A field was applied along [1 -1 0] to probe the observed metamagnetic transition in the magnetization measurement. The field decouples two magnetic sublattices corresponding to the propagation vectors q1 = (½, ½, 0) and q2 = (-½, ½, 0), respectively. Each sublattice shows a "stripe" order with a Néel-type arrangement in each single layer. The "stripe" order with q1 remains nearly intact up to 6 T, while the other one with q2 is suppressed at a critical field Hc ~1.7 T, indicating a partial disorder. The Hc varies with temperature and is manifested in the H-T phase diagram constructed by measuring the magnetization in BaNd2ZnS5.

13.
Nat Commun ; 14(1): 527, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36720874

RESUMEN

The interaction between strong correlation and Berry curvature is an open territory of in the field of quantum materials. Here we report large anomalous Hall conductivity in a Kondo lattice ferromagnet USbTe which is dominated by intrinsic Berry curvature at low temperatures. However, the Berry curvature induced anomalous Hall effect does not follow the scaling relation derived from Fermi liquid theory. The onset of the Berry curvature contribution coincides with the Kondo coherent temperature. Combined with ARPES measurement and DMFT calculations, this strongly indicates that Berry curvature is hosted by the flat bands induced by Kondo hybridization at the Fermi level. Our results demonstrate that the Kondo coherence of the flat bands has a dramatic influence on the low temperature physical properties associated with the Berry curvature, calling for new theories of scaling relations of anomalous Hall effect to account for the interaction between strong correlation and Berry curvature.

14.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 4): 589-592, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35975825

RESUMEN

A new compound, Ba3Ga2O5Cl2, isostructural with Ba3Fe2O5Cl2, was synthesized by solid-state reaction in air. Through single-crystal and powder X-ray diffraction analysis, the crystal structure was determined to be cubic with chiral space group I213 and unit-cell parameter a = 9.928 (1) Å. The Ga3+ ions in Ba3Ga2O5Cl2 are coordinated by O atoms and form GaO4 tetrahedra. Ten neighboring GaO4 tetrahedra are further bridged through corner sharing and rotation along the body diagonal, producing the chiral structure. Magnetization measurements indicate temperature-independent diamagnetic behavior, which is qualitatively consistent with core diamagnetism from all the constituent elements.


Asunto(s)
Fenómenos Magnéticos , Magnetismo , Cristalografía por Rayos X , Fenómenos Físicos
15.
J Phys Condens Matter ; 33(19)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33556923

RESUMEN

Low temperature magnetization of CrI3, CrSiTe3and CrGeTe3single crystals were systematically studied. Based on the temperature dependence of extrapolated spontaneous magnetization from magnetic isotherms measured at different temperatures, the spin stiffness constant (D) and spin excitation gap (Δ) were extracted according to Bloch's law. For spin stiffness,Dis estimated to be 27 ± 6 meV Å2, 20 ± 3 meV Å2and 38 ± 7 meV Å2for CrI3, CrSiTe3and CrGeTe3respectively. Spin excitation gaps determined via Bloch's formulation have larger error bars yielding 0.59 ± 0.34 meV (CrI3), 0.37 ± 0.22 meV (CrSiTe3) and 0.28 ± 0.19 meV (CrGeTe3). Among all three studied compounds, larger spin stiffness value leads to higher ferromagnetic transition temperature.

16.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 5): 884-891, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33017321

RESUMEN

The results of the structural determination, magnetic characterization, and theoretical calculations of a new ruthenium-oxo complex, Li4[Ru2OCl10]·10H2O, are presented. Single crystals were grown using solvent methods and the crystal structure was characterized by single crystal X-ray diffraction. Li4[Ru2OCl10]·10H2O crystallizes into a low-symmetry triclinic structure (P1) due to the much smaller Li+ cation compared to K+ cation in the tetragonal complex K4[Ru2OCl10]·H2O. The X-ray photoelectron spectra confirm only the single valent Ru4+ in Li4[Ru2OCl10]·10H2O even though two distinct Ru sites exist in the crystal structure. Magnetic measurements reveal the diamagnetic property of Li4[Ru2OCl10]·10H2O with unpaired electrons existing on Ru4+. Furthermore, the molecular orbital analysis matches well with the observed UV and magnetic measurements.

17.
Adv Mater ; 31(17): e1808074, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30843286

RESUMEN

2D materials are promising candidates for next-generation electronic devices. In this regime, insulating 2D ferromagnets, which remain rare, are of special importance due to their potential for enabling new device architectures. Here the discovery of ferromagnetism is reported in a layered van der Waals semiconductor, VI3 , which is based on honeycomb vanadium layers separated by an iodine-iodine van der Waals gap. It has a BiI3 -type structure ( R 3 ¯ , No.148) at room temperature, and the experimental evidence suggests that it may undergo a subtle structural phase transition at 78 K. VI3 becomes ferromagnetic at 49 K, below which magneto-optical Kerr effect imaging clearly shows ferromagnetic domains, which can be manipulated by the applied external magnetic field. The optical bandgap determined by reflectance measurements is 0.6 eV, and the material is highly resistive.

18.
Adv Sci (Weinh) ; 6(4): 1800897, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30828518

RESUMEN

Nodal-line semimetals (NLSs) represent a new type of topological semimetallic phase beyond Weyl and Dirac semimetals in the sense that they host closed loops or open curves of band degeneracies in the Brillouin zone. Parallel to the classification of type-I and type-II Weyl semimetals, there are two types of NLSs. The type-I NLS phase has been proposed and realized in many compounds, whereas the exotic type-II NLS phase that strongly violates Lorentz symmetry has remained elusive. First-principles calculations show that Mg3Bi2 is a material candidate for the type-II NLS. The band crossing is close to the Fermi level and exhibits the type-II nature of the nodal line in this material. Spin-orbit coupling generates only a small energy gap (≈35 meV) at the nodal points and does not negate the band dispersion of Mg3Bi2 that yields the type-II nodal line. Based on this prediction, Mg3Bi2 single crystals are synthesized and the presence of the type-II nodal lines in the material is confirmed. The angle-resolved photoemission spectroscopy measurements agree well with the first-principles results below the Fermi level and thus strongly suggest Mg3Bi2 as an ideal material platform for studying the as-yet unstudied properties of type-II nodal-line semimetals.

19.
J Phys Condens Matter ; 30(7): 075701, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29355107

RESUMEN

We report that the partial substitution of Cu for Co has a significant impact on the magnetic properties of the Heusler-phase Weyl fermion candidate ZrCo2Sn. Polycrystalline samples of ZrCo2-x Cu x Sn (x = 0.0-1.0) exhibited a linearly decreasing ferromagnetic transition temperature and similarly decreasing saturated magnetic moment on increasing Cu substitution x. Materials with Cu contents near x = 1 and several other quaternary materials synthesized at the same x (ZrCoT'Sn (T' = Rh, Pd, Ni)) display what appears to be non-ferromagnetic magnetization behavior with spin glass characteristics. Electronic structure calculations suggest that the half-metallic nature of unsubstituted ZrCo2Sn is disrupted significantly by the Cu substitutions, leading to the breakdown of the magnetization versus electron count guidelines usually followed by Heusler phases, and a more typical metallic non-spin-polarized electronic structure at high x.

20.
Materials (Basel) ; 10(7)2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28773175

RESUMEN

A new 122-type phase, monoclinic BaIr2Ge2 is successfully synthesized by arc melting; X-ray diffraction and scanning electron microscopy are used to purify the phase and determine its crystal structure. BaIr2Ge2 adopts a clathrate-like channel framework structure of the monoclinic BaRh2Si2-type, with space group P21/c. Structural comparisons of clathrate, ThCr2Si2, CaBe2Ge2, and BaRh2Si2 structure types indicate that BaIr2Ge2 can be considered as an intermediate between clathrate and layered compounds. Magnetic measurements show it to be diamagnetic and non-superconducting down to 1.8 K. Different from many layered or clathrate compounds, monoclinic BaIr2Ge2 displays a metallic resistivity. Electronic structure calculations performed for BaIr2Ge2 support its observed structural stability and physical properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA