Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Int J Radiat Oncol Biol Phys ; 119(3): 968-977, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284961

RESUMEN

PURPOSE: Our purpose was to compare robust intensity modulated proton therapy (IMPT) plans, automatically generated with wish-list-based multicriterial optimization as implemented in Erasmus-iCycle, with manually created robust clinical IMPT plans for patients with head and neck cancer. METHODS AND MATERIALS: Thirty-three patients with head and neck cancer were retrospectively included. All patients were previously treated with a manually created IMPT plan with 7000 cGy dose prescription to the primary tumor (clinical target volume [CTV]7000) and 5425 cGy dose prescription to the bilateral elective volumes (CTV5425). Plans had a 4-beam field configuration and were generated with scenario-based robust optimization (21 scenarios, 3-mm setup error, and ±3% density uncertainty for the CTVs). Three clinical plans were used to configure the Erasmus-iCycle wish-list for automated generation of robust IMPT plans for the other 30 included patients, in line with clinical planning requirements. Automatically and manually generated IMPT plans were compared for (robust) target coverage, organ-at-risk (OAR) doses, and normal tissue complication probabilities (NTCP). No manual fine-tuning of automatically generated plans was performed. RESULTS: For all automatically generated plans, voxel-wise minimum D98% values for the CTVs were within clinical constraints and similar to manual plans. All investigated OAR parameters were favorable in the automatically generated plans (all P < .001). Median reductions in mean dose to OARs went up to 667 cGy for the inferior pharyngeal constrictor muscle, and median reductions in D0.03cm3 in serial OARs ranged up to 1795 cGy for the spinal cord surface. The observed lower mean dose in parallel OARs resulted in statistically significant lower NTCP for xerostomia (grade ≥2: 34.4% vs 38.0%; grade ≥3: 9.0% vs 10.2%) and dysphagia (grade ≥2: 11.8% vs 15.0%; grade ≥3: 1.8% vs 2.8%). CONCLUSIONS: Erasmus-iCycle was able to produce IMPT dose distributions fully automatically with similar (robust) target coverage and improved OAR doses and NTCPs compared with clinical manual planning, with negligible hands-on planning workload.


Asunto(s)
Neoplasias de Cabeza y Cuello , Órganos en Riesgo , Terapia de Protones , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo/diagnóstico por imagen , Órganos en Riesgo/efectos de la radiación , Radioterapia de Intensidad Modulada/métodos , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Estudios Retrospectivos , Terapia de Protones/métodos , Automatización , Masculino , Errores de Configuración en Radioterapia/prevención & control
2.
Clin Transl Radiat Oncol ; 39: 100598, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36860581

RESUMEN

Background: Intensity Modulated Proton Therapy (IMPT) in head and neck cancer (HNC) is susceptible to anatomical changes and patient set-up inaccuracies during the radiotherapy course, which can cause discrepancies between planned and delivered dose. The discrepancies can be counteracted by adaptive replanning strategies. This article reviews the observed dosimetric impact of adaptive proton therapy (APT) and the timing to perform a plan adaptation in IMPT in HNC. Methods: A literature search of articles published in PubMed/MEDLINE, EMBASE and Web of Science from January 2010 to March 2022 was performed. Among a total of 59 records assessed for possible eligibility, ten articles were included in this review. Results: Included studies reported on target coverage deterioration in IMPT plans during the RT course, which was recovered with the application of an APT approach. All APT plans showed an average improved target coverage for the high- and low-dose targets as compared to the accumulated dose on the planned plans. Dose improvements up to 2.5 Gy (3.5 %) and up to 4.0 Gy (7.1 %) in the D98 of the high- and low dose targets were observed with APT. Doses to the organs at risk (OARs) remained equal or decreased slightly after APT was applied. In the included studies, APT was largely performed once, which resulted in the largest target coverage improvement, but eventual additional APT improved the target coverage further. There is no data showing what is the most appropriate timing for APT. Conclusion: APT during IMPT for HNC patients improves target coverage. The largest improvement in target coverage was found with a single adaptive intervention, and an eventual second or more frequent APT application improved the target coverage further. Doses to the OARs remained equal or decreased slightly after applying APT. The most optimal timing for APT is yet to be determined.

3.
J Bronchology Interv Pulmonol ; 28(4): 262-271, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34162799

RESUMEN

BACKGROUND: The endobronchial diagnosis of peripheral lung lesions suspected of lung cancer remains a challenge from a navigation as well as an adequate tissue sampling perspective. Cone-beam computed tomography (CBCT) guidance is a relatively new technology and allows for 3-dimensional imaging confirmation as well as navigation and biopsy guidance, but, also involves radiation. This study investigates how radiation exposure and diagnostic accuracy in the CBCT-guided navigation bronchoscopy evolves with increasing experience, and, with a specific tailoring of CBCT and fluoroscopic imaging protocols towards the procedure. PATIENTS AND METHODS: In this observational clinical trial, all 238 consecutive patients undergoing a CBCT-guided navigation bronchoscopy from the start of our CBCT-guided navigation bronchoscopy program (December 2017) until June 2020 were included. Procedural dose characteristics and diagnostic accuracy are reported as a function of time. RESULTS: Procedural radiation exposure as measured by the dose area product initially was 47.5 Gy·cm2 (effective dose: 14.3 mSv) and gradually reduced to 25.4 Gy·cm2 (5.8 mSv). The reduction in fluoroscopic dose area product was highest, from 19.0 Gy·cm2 (5.2 mSv) to 2.2 Gy·cm2 (0.37 mSv, 88% reduction), despite a significant increase of fluoroscopy time. The diagnostic accuracy of navigation bronchoscopy increased from 72% to 90%. CONCLUSION: A significant learning effect can be seen in the radiation safety and diagnostic accuracy of a CBCT-guided and augmented fluoroscopy-guided navigation bronchoscopy. With increasing experience and tailoring of imaging protocols to the procedure, the procedural accuracy improved, while the effective dose for patients and staff was reduced.


Asunto(s)
Broncoscopía , Exposición a la Radiación , Tomografía Computarizada de Haz Cónico , Fluoroscopía , Humanos , Curva de Aprendizaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA