Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Rep ; 20(6): 85, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38665422

RESUMEN

Stroke is an important medical problem in developing countries, characterized by a sudden disruption of blood supply to the brain, either through occlusion or hemorrhage. It is a major cause of neurological impairment, resulting in high medical costs. The present study examined the effect of 6-gingerol on morphological changes, antioxidant defenses, and the anti-apoptotic factors p38 mitogen-activated protein kinase (MAPK) and mitofusin (Mfn)2, in a rat model of focal cerebral ischemia. A total of 60 healthy male Wistar rats were randomly allocated into six groups: Control, right middle cerebral artery occlusion (Rt.MCAO) + vehicle, Rt.MCAO + piracetam, and Rt.MCAO + 6-Gin 5, 10 and 20 mg/kg BW groups. The results indicated that 6-gingerol treatment for a duration of 7 days reverses morphological alterations, enhances catalase and glutathione peroxidase activities, reduces Bax, caspase-3 and MAPK expression, and increases Bcl-xL and Mfn2 expression in the cortex and hippocampus. In conclusion, 6-gingerol demonstrated significant in vivo effectiveness in mitigating pathological changes induced by cerebral ischemia. This beneficial effect is attributed, at least in part, to preservation of antioxidant defenses and activation of anti-apoptotic pathways.

2.
Biomed Rep ; 21(3): 130, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39070112

RESUMEN

Pinostrobin, a key bioactive compound found in the medicinal plant Boesenbergia rotunda (L.), has been noted for its beneficial biological properties including antioxidant, anti-inflammation, anti-cancer and anti-amnesia activities. In view of this, the present study purposed to evaluate the neuroprotective potential of pinostrobin in reversing scopolamine-induced cognitive impairment involving oxidative stress and cholinergic function in rats. A total of 30 male Wistar rats were randomly divided into five groups (n=6): Group 1 received vehicle as a control, group 2 received vehicle + scopolamine (3 mg/kg, i.p.), group 3 received pinostrobin (20 mg/kg, p.o.) + scopolamine, group 4 received pinostrobin (40 mg/kg, p.o.) + scopolamine and group 5 received donepezil (5 mg/kg, p.o.) + scopolamine. Treatments were administered orally to the rats for 14 days. During the final 7 days of treatment, a daily injection of scopolamine was administered. Scopolamine impaired learning and memory performance, as measured by the novel object recognition test and the Y-maze test. Additionally, oxidative stress marker levels, acetylcholinesterase (AChE) activity, choline acetyltransferase (ChAT) and glutamate receptor 1 (GluR1) expression were determined. Consequently, the findings demonstrated that the administration of pinostrobin (20 and 40 mg/kg) markedly improved cognitive function as indicated by an increase in recognition index and by spontaneous alternation behaviour. Pinostrobin also modulated the levels of oxidative stress by causing a decrease in malondialdehyde levels accompanied by increases in superoxide dismutase and glutathione activities. Similarly, pinostrobin markedly enhanced cholinergic function by decreasing AChE activity and promoting ChAT immunoreactivity in the hippocampus. Additionally, the reduction in GluR1 expression due to scopolamine was diminished by treatment with pinostrobin. The findings indicated that pinostrobin exhibited a significant restoration of scopolamine-induced memory impairment by regulating oxidative stress and cholinergic system function. Thus, pinostrobin could serve as a potential therapeutic agent for the management of neurodegenerative diseases such as Alzheimer's disease.

3.
F1000Res ; 12: 846, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38434672

RESUMEN

Background: One of the most common neurodegenerative diseases is Parkinson's disease (PD); PD is characterized by a reduction of neurons containing dopamine in the substantia nigra (SN), which leads to a lack of dopamine (DA) in nigrostriatal pathways, resulting in motor function disorders. Oxidative stress is considered as one of the etiologies involved in dopaminergic neuronal loss. Thus, we aimed to investigate the neuroprotective effects of pinostrobin (PB), a bioflavonoid extracted from Boesenbergia rotunda with antioxidative activity in PD. Methods: Rats were treated with 40 mg/kg of PB for seven consecutive days before and after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. After completing the experiment, the brains including SN and striatum were used for histological studies and biochemical assays. Results: PB treatment demonstrated a reduction of free radicals in the SN as indicated by significantly decreased MDA levels, whereas the antioxidative enzymes (SOD and GSH) were significantly increased. Furthermore, PB treatment significantly increased glial cell line-derived neurotrophic factor (GDNF) immunolabelling which has neurotrophic and neuroprotective effects on the survival of dopaminergic neurons. Furthermore, PB treatment was shown to protect CA1 and CA3 neurons in the hippocampus and dopaminergic neurons in the SN. DA levels in the SN were increased after PB treatment, leading to the improvement of motor function of PD rats. Conclusions: These results imply that PB prevents MPTP-induced neurotoxicity via its antioxidant activities and increases GDNF levels, which may contribute to the therapeutic strategy for PD.


Asunto(s)
Flavanonas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Ratas , Antioxidantes/metabolismo , Dopamina , Neuronas Dopaminérgicas , Factor Neurotrófico Derivado de la Línea Celular Glial , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA