Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Theor Appl Genet ; 133(10): 2961-2974, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32651668

RESUMEN

KEY MESSAGE: Catalytically active indica SSIIa allele in high amylose rice with down-regulated japonica SBEIIb can increase starch content and modify the starch structure and properties without changing its amylose content. Rice (Oryza sativa) genotypes with inactive starch synthase IIa (SSIIa) with recessive variants of starch branching enzyme IIb (SBEIIb) exhibit a range of alterations in grain phenotype, starch granule morphology, starch granule bound proteins, starch structure, and functional properties. However, the interactions between the two enzymes have not been thoroughly investigated yet. We analysed recombinant rice lines having down-regulated SBEIIb expression (SBEIIbDR) with either indica or japonica type SSIIa (SSIIaind or SSIIajap). In SBEIIbDR rice starch granules, the increased abundance of two protein bands (SSI and SSIIa) was found with eight additional protein bands not generally associated with starch granules. The amount of SSIIa was higher in SSIIaindSBEIIbDR than SSIIajapSBEIIbDR, which indicated that indica type SSIIa, possibly in the monomer form, was extensively involved in starch biosynthesis in the SBEIIbDR endosperm. Furthermore, SSIIaindSBEIIbDR grains had higher total starch content and higher starch swelling power than SSIIajapSBEIIbDR lines, but the amylopectin gelatinization temperatures and enthalpy and the apparent amylose content remained similar. In summary, this work suggests that SSIIaind can partly compensate for the alteration of starch synthesis resulting from the SBEIIb down-regulation in japonica background without reducing its amylose content. The study provides insight into the starch structural and textural improvements of high amylose starch.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano/genética , Amilosa/química , Oryza/genética , Proteínas de Plantas/genética , Almidón Sintasa/genética , Almidón/química , Alelos , Cruzamientos Genéticos , Regulación hacia Abajo , Grano Comestible/genética , Endospermo/química , Regulación de la Expresión Génica de las Plantas , Genotipo , Oryza/enzimología , Plantas Modificadas Genéticamente/enzimología
2.
J Exp Bot ; 65(8): 2189-201, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24634486

RESUMEN

Studies in Arabidopsis and rice suggest that manipulation of starch synthase I (SSI) expression in wheat may lead to the production of wheat grains with novel starch structure and properties. This work describes the suppression of SSI expression in wheat grains using RNAi technology, which leads to a low level of enzymatic activity for SSI in the developing endosperm, and a low abundance of SSI protein inside the starch granules of mature grains. The amylopectin fraction of starch from the SSI suppressed lines showed an increased frequency of very short chains (degree of polymerization, dp 6 and 7), a lower proportion of short chains (dp 8-12), and more intermediate chains (dp 13-20) than in the grain from their negative segregant lines. In the most severely affected line, amylose content was significantly increased, the morphology of starch granules was changed, and the proportion of B starch granules was significantly reduced. The change of the fine structure of the starch in the SSI-RNAi suppression lines alters the gelatinization temperature, swelling power, and viscosity of the starch. This work demonstrates that the roles of SSI in the determination of starch structure and properties are similar among different cereals and Arabidopsis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Almidón Sintasa/genética , Almidón/genética , Triticum/anatomía & histología , Triticum/genética , Endospermo/anatomía & histología , Endospermo/genética , Endospermo/metabolismo , Endospermo/ultraestructura , Microscopía Electrónica de Rastreo , Proteínas de Plantas/metabolismo , Semillas/anatomía & histología , Semillas/química , Semillas/genética , Semillas/ultraestructura , Almidón/metabolismo , Almidón/ultraestructura , Almidón Sintasa/metabolismo , Triticum/metabolismo
3.
Foods ; 10(6)2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-34071051

RESUMEN

Small quantities of lipids accumulate in the white rice grains. These are grouped into non-starch lipid and starch lipid fractions that affect starch properties through association with starch. Lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) are two major lipid classes in the two fractions. Using high-oleic rice grains, we investigated the fatty-acid composition in flour and starch by LC-MS and evaluated its impact on starch properties. In the wild-type grain, nearly 50% of fatty acids in LPC and LPE were palmitic acid (C16:0), over 20% linoleic acid (C18:2) and less than 10% oleic acid (C18:1). In the high-oleic rice grain, C18:1 increased at the expense of C18:2 and C16:0. The compositional changes in starch lipids suggest that LPC and LPE are transported to an amyloplast with an origin from endoplasmic reticulum-derived PC and PE during endosperm development. The high-dissociation temperature of the amylose-lipid complex (ALC) and restricted starch swelling power in the high-oleic rice starch indicates that the stability of the ALC involving C18:1 is higher than that of C18:2 and C16:0. This study provides insight into the lipid deposition and starch properties of rice grains with optimized fatty-acid composition.

4.
Front Plant Sci ; 10: 1444, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781148

RESUMEN

Triacylglycerol is a major component of vegetable oil in seeds and fruits of many plants, but its production in vegetative tissues is rather limited. It would be intriguing and important to explore any possibility to expand current oil production platforms, for example from the plant vegetative tissues. By expressing a suite of transgenes involved in the triacylglycerol biosynthesis, we have previously observed substantial accumulation of triacylglycerol in tobacco (Nicotiana tabacum) leaf and potato (Solanum tuberosum) tuber. In this study, simultaneous RNA interference (RNAi) downregulation of ADP-glucose pyrophosphorylase (AGPase) and Sugar-dependent1 (SDP1), was able to increase the accumulation of triacylglycerol and other lipids in both wild type potato and the previously generated high oil potato line 69. Particularly, a 16-fold enhancement of triacylglycerol production was observed in the mature transgenic tubers derived from the wild type potato, and a two-fold increase in triacylglycerol was observed in the high oil potato line 69, accounting for about 7% of tuber dry weight, which is the highest triacylglycerol accumulation ever reported in potato. In addition to the alterations of lipid content and fatty acid composition, sugar accumulation, starch content of the RNAi potato lines in both tuber and leaf tissues were also substantially changed, as well as the tuber starch properties. Microscopic analysis further revealed variation of lipid droplet distribution and starch granule morphology in the mature transgenic tubers compared to their parent lines. This study reflects that the carbon partitioning between lipid and starch in both leaves and non-photosynthetic tuber tissues, respectively, are highly orchestrated in potato, and it is promising to convert low-energy starch to storage lipids via genetic manipulation of the carbon metabolism pathways.

5.
J AOAC Int ; 87(3): 740-8, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15287674

RESUMEN

The increased incidence in many countries in lifestyle diseases such as colorectal cancer, cardiovascular disease, and diabetes has led to an enhanced interest in disease-prevention measures that can be delivered to target populations through diet. Resistant starch (RS) is emerging as an important dietary component that has the potential to reduce the incidence of bowel health disorders. However, the range of crop species that can serve as effective sources of RS is limited. In this paper the state of knowledge of the starch biosynthesis pathway is reviewed and opportunities to manipulate crop genetics in order to generate additional sources of RS are discussed. The need for a "whole of chain" approach to delivery of RS to the consumer is highlighted because of the impact that different food-processing technologies can have in maintaining, enhancing, or destroying the RS potential of a raw material or food.


Asunto(s)
Plantas/metabolismo , Almidón/biosíntesis , Amilosa/química , Fibras de la Dieta , Análisis de los Alimentos , Mutación/genética , Plantas/química , Plantas/genética
6.
Theor Appl Genet ; 115(8): 1053-65, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17721773

RESUMEN

Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.


Asunto(s)
Dosificación de Gen , Proteínas de Plantas/metabolismo , Semillas/genética , Almidón Sintasa/genética , Almidón/biosíntesis , Triticum/genética , Biomarcadores , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Reacción en Cadena de la Polimerasa , Semillas/enzimología , Semillas/metabolismo , Almidón/química , Almidón Sintasa/fisiología , Triticum/química , Triticum/enzimología
7.
Plant Physiol ; 137(1): 43-56, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15618430

RESUMEN

To examine the role of isoamylase1 (ISA1) in amylopectin biosynthesis in plants, a genomic DNA fragment from Aegilops tauschii was introduced into the ISA1-deficient rice (Oryza sativa) sugary-1 mutant line EM914, in which endosperm starch is completely replaced by phytoglycogen. A. tauschii is the D genome donor of wheat (Triticum aestivum), and the introduced fragment effectively included the gene for ISA1 for wheat (TaISA1) that was encoded on the D genome. In TaISA1-expressing rice endosperm, phytoglycogen synthesis was substantially replaced by starch synthesis, leaving only residual levels of phytoglycogen. The levels of residual phytoglycogen present were inversely proportional to the expression level of the TaISA1 protein, although the level of pullulanase that had been reduced in EM914 was restored to the same level as that in the wild type. Small but significant differences were found in the amylopectin chain-length distribution, gelatinization temperatures, and A-type x-ray diffraction patterns of the starches from lines expressing TaISA1 when compared with wild-type rice starch, although in the first two parameters, the effect was proportional to the expression level of TaISA. The impact of expression levels of ISA1 on starch structure and properties provides support for the view that ISA1 is directly involved in the synthesis of amylopectin.


Asunto(s)
Amilopectina/biosíntesis , Isoamilasa/metabolismo , Oryza/genética , Triticum/genética , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Isoamilasa/genética , Isoenzimas , Datos de Secuencia Molecular , Fenotipo , Plantas Modificadas Genéticamente , Semillas/fisiología , Almidón/metabolismo , Triticum/enzimología
8.
Funct Plant Biol ; 31(6): 591-601, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32688931

RESUMEN

The role of starch branching enzyme-I (SBE-I) in determining starch structure in the endosperm has been investigated. Null mutations of SBE-I at the A, B and D genomes of wheat were identified in Australian wheat varieties by immunoblotting. By combining individual null mutations at the B and D genomes through hybridisation, a double-null mutant wheat, which lacks the B and D isoforms of SBE-I, was developed. Wheat mutants lacking all the three isoforms of SBE-I were generated from a doubled haploid progeny of a cross between the BD double-null mutant line and a Chinese Spring (CS) deletion line lacking the A genome isoform. Comparison of starch from this mutant wheat to that from wild type revealed no substantial alteration in any of the structural or functional properties analysed. Further analysis of this triple-null mutant line revealed the presence of another residual peak of SBE-I activity, referred to as SBE-Ir, in wheat endosperm representing < 3% of the activity of SBE-I in wild type endosperm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA