Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638885

RESUMEN

Legumes are a better source of proteins and are richer in diverse micronutrients over the nutritional profile of widely consumed cereals. However, when exposed to a diverse range of abiotic stresses, their overall productivity and quality are hugely impacted. Our limited understanding of genetic determinants and novel variants associated with the abiotic stress response in food legume crops restricts its amelioration. Therefore, it is imperative to understand different molecular approaches in food legume crops that can be utilized in crop improvement programs to minimize the economic loss. 'Omics'-based molecular breeding provides better opportunities over conventional breeding for diversifying the natural germplasm together with improving yield and quality parameters. Due to molecular advancements, the technique is now equipped with novel 'omics' approaches such as ionomics, epigenomics, fluxomics, RNomics, glycomics, glycoproteomics, phosphoproteomics, lipidomics, regulomics, and secretomics. Pan-omics-which utilizes the molecular bases of the stress response to identify genes (genomics), mRNAs (transcriptomics), proteins (proteomics), and biomolecules (metabolomics) associated with stress regulation-has been widely used for abiotic stress amelioration in food legume crops. Integration of pan-omics with novel omics approaches will fast-track legume breeding programs. Moreover, artificial intelligence (AI)-based algorithms can be utilized for simulating crop yield under changing environments, which can help in predicting the genetic gain beforehand. Application of machine learning (ML) in quantitative trait loci (QTL) mining will further help in determining the genetic determinants of abiotic stress tolerance in pulses.


Asunto(s)
Inteligencia Artificial , Productos Agrícolas/genética , Fabaceae/genética , Genómica , Fitomejoramiento , Estrés Fisiológico/genética , Productos Agrícolas/crecimiento & desarrollo , Fabaceae/crecimiento & desarrollo , Sitios de Carácter Cuantitativo
2.
Front Plant Sci ; 12: 693630, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34531881

RESUMEN

Aluminium stress causes plant growth retardation and engenders productivity loss under acidic soil conditions. This study accentuates morpho-physiological and molecular bases of aluminium (Al) tolerance within and between wild (ILWL-15) and cultivated (L-4602 and BM-4) lentil species. Morpho-physiological studies revealed better cyto-morphology of tolerant genotypes over sensitive under Al3+ stress conditions. Mitotic lesions were observed in root cells under these conditions. Transcriptome analysis under Al3+ stress revealed 30,158 specifically up-regulated genes in different comparison groups showing contigs between 15,305 and 18,861 bp. In tolerant genotypes, top up-regulated differentially expressed genes (DEGs) were found to be involved in organic acid synthesis and exudation, production of antioxidants, callose synthesis, protein degradation, and phytohormone- and calcium-mediated signalling under stress conditions. DEGs associated with epigenetic regulation and Al3+ sequestration inside vacuole were specifically upregulated in wild and cultivars, respectively. Based on assembled unigenes, an average of 6,645.7 simple sequence repeats (SSRs) and 14,953.7 high-quality single nucleotide polymorphisms (SNPs) were spotted. By quantitative real-time polymerase chain reaction (qRT-PCR), 12 selected genes were validated. Gene ontology (GO) annotation revealed a total of 8,757 GO terms in three categories, viz., molecular, biological, and cellular processes. Kyoto Encyclopaedia of Genes and Genomes pathway scanning also revealed another probable pathway pertaining to metacaspase-1,-4, and -9 for programmed cell death under Al-stress conditions. This investigation reveals key inter- and intraspecies metabolic pathways associated with Al-stress tolerance in lentil species that can be utilised in designing future breeding programmes to improve lentil and related species towards Al3+ stress.

3.
Protoplasma ; 258(5): 1029-1045, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33598755

RESUMEN

Aluminum stress deteriorates lentil production under acidic soils. Enhanced insight into Al tolerance traits is needed to improve its productivity. Therefore, Al-resistant (L-4602, PAL-8) and Al-sensitive (BM-4, EC-223229) cultivars along with a resistant wild (ILWL-15) were characterized for morpho-physiological traits viz. seedling root architecture (SRA), Al accumulation, and localization via fluorescent and non-fluorescent staining under control and Al-treated conditions. Also, antioxidant activities and organic acid secretion were quantified, and expressions of 10 associated genes were analyzed. Roots of Al-resistant cultivars and wild genotype showed higher root growth, antioxidant enzyme activities, and organic acid secretion than Al-sensitive ones. Among these traits, higher organic acid secretion was influenced by enhanced expression of genes, especially-aluminum sensitive-3 (ALS 3), aluminum-activated malate transporter (ALMT), multidrug and toxic compound extrusion (MATE), citrate synthase (CS), and phospho enol pyruvate carboxylase (PEPC)-which helped in reducing Al and callose accumulation. These genes were located on lentil chromosomes via sequence alignment with lentil draft genome. A strong link between morpho-physiological variation and organic acid secretion was noted which reinforced the prominence of exclusion mechanism. It was complemented by enhanced antioxidant activities at seedling stage which mitigated Al stress effects on SRA. Wild outperformed over cultivars indicating its impregnable evolution which can be exploited to better understand tolerance mechanisms. Al-resistant cultivars had significantly higher seed yield than Al-sensitive and national checks on Al-toxic fields, confirming-tolerance is sustained till reproductive stage in lentil. This study elucidated role of gene families in eliminating Al toxicity that will assist breeders to formulate strategies for developing Al-resistant cultivars.


Asunto(s)
Aluminio , Lens (Planta) , Aluminio/toxicidad , Humanos , Lens (Planta)/genética , Raíces de Plantas , Semillas , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA