RESUMEN
The recent revolution in tissue-resident macrophage biology has resulted largely from murine studies performed in C57BL/6 mice. Here, using both C57BL/6 and BALB/c mice, we analyze immune cells in the pleural cavity. Unlike C57BL/6 mice, naive tissue-resident large-cavity macrophages (LCMs) of BALB/c mice failed to fully implement the tissue-residency program. Following infection with a pleural-dwelling nematode, these pre-existing differences were accentuated with LCM expansion occurring in C57BL/6, but not in BALB/c mice. While infection drove monocyte recruitment in both strains, only in C57BL/6 mice were monocytes able to efficiently integrate into the resident pool. Monocyte-to-macrophage conversion required both T cells and interleukin-4 receptor alpha (IL-4Rα) signaling. The transition to tissue residency altered macrophage function, and GATA6+ tissue-resident macrophages were required for host resistance to nematode infection. Therefore, during tissue nematode infection, T helper 2 (Th2) cells control the differentiation pathway of resident macrophages, which determines infection outcome.
Asunto(s)
Filariasis , Filarioidea , Infecciones por Nematodos , Ratones , Animales , Filarioidea/fisiología , Células Th2 , Monocitos , Cavidad Pleural , Ratones Endogámicos C57BL , Macrófagos/fisiología , Diferenciación Celular , Ratones Endogámicos BALB CRESUMEN
Regulatory T cells (Treg cells) perform suppressive functions in disparate tissue environments and against many inflammatory insults, yet the tissue-enriched factor(s) that influence Treg cell phenotype and function remain largely unknown. We have shown a vital role for transforming growth factor-ß (TGF-ß) signals in safe-guarding specific Treg cell functions. TGF-ß signals were dispensable for steady-state Treg cell homeostasis and for Treg cell suppression of T cell proliferation and T helper-1 (Th1) cell differentiation. However, Treg cells require TGF-ß signals to appropriately dampen Th17 cells and regulate responses in the gastrointestinal tract. TGF-ß signaling maintains CD103 expression, promotes expression of the colon-specific trafficking molecule GPR15, and inhibits expression of GPR174, a receptor for lysophosphatidylserine, on Treg cells, collectively supporting the accumulation and retention of Treg cells in the colon and control of colitogenic responses. Thus, we reveal an unrecognized function for TGF-ß signaling as an upstream factor controlling Treg cell activity in specific tissue environments.
Asunto(s)
Especificidad de Órganos/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Factor de Crecimiento Transformador beta/inmunología , Animales , Antígenos CD/inmunología , Antígenos CD/metabolismo , Proliferación Celular , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Citometría de Flujo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/patología , Homeostasis/inmunología , Cadenas alfa de Integrinas/inmunología , Cadenas alfa de Integrinas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores Acoplados a Proteínas G/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/inmunología , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Linfocitos T Reguladores/metabolismo , Células Th17/metabolismo , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Immuno-surveillance networks operating at barrier sites are tuned by local tissue cues to ensure effective immunity. Site-specific commensal bacteria provide key signals ensuring host defense in the skin and gut. However, how the oral microbiome and tissue-specific signals balance immunity and regulation at the gingiva, a key oral barrier, remains minimally explored. In contrast to the skin and gut, we demonstrate that gingiva-resident T helper 17 (Th17) cells developed via a commensal colonization-independent mechanism. Accumulation of Th17 cells at the gingiva was driven in response to the physiological barrier damage that occurs during mastication. Physiological mechanical damage, via induction of interleukin 6 (IL-6) from epithelial cells, tailored effector T cell function, promoting increases in gingival Th17 cell numbers. These data highlight that diverse tissue-specific mechanisms govern education of Th17 cell responses and demonstrate that mechanical damage helps define the immune tone of this important oral barrier.
Asunto(s)
Encía/inmunología , Inmunidad Mucosa/inmunología , Vigilancia Inmunológica/inmunología , Mucosa Bucal/inmunología , Células Th17/inmunología , Animales , Citometría de Flujo , Encía/microbiología , Humanos , Masticación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota , Mucosa Bucal/microbiología , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
The gut microbiota is important for host health and immune system function. Moreover autoimmune diseases, such as rheumatoid arthritis, are associated with significant gut microbiota dysbiosis, although the causes and consequences of this are not fully understood. It has become clear that the composition and metabolic outputs of the microbiome exhibit robust 24 h oscillations, a result of daily variation in timing of food intake as well as rhythmic circadian clock function in the gut. Here, we report that experimental inflammatory arthritis leads to a re-organization of circadian rhythmicity in both the gut and associated microbiome. Mice with collagen induced arthritis exhibited extensive changes in rhythmic gene expression in the colon, and reduced barrier integrity. Re-modeling of the host gut circadian transcriptome was accompanied by significant alteration of the microbiota, including widespread loss of rhythmicity in symbiont species of Lactobacillus, and alteration in circulating microbial derived factors, such as tryptophan metabolites, which are associated with maintenance of barrier function and immune cell populations within the gut. These findings highlight that altered circadian rhythmicity during inflammatory disease contributes to dysregulation of gut integrity and microbiome function.
Asunto(s)
Artritis Experimental , Microbioma Gastrointestinal , Microbiota , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Disbiosis/etiología , Artritis Experimental/complicaciones , ColágenoRESUMEN
Tissue-infiltrating Ly6C(hi) monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. How and where this diversity of function is imposed remains poorly understood. Here we show that during acute gastrointestinal infection, priming of monocytes for regulatory function preceded systemic inflammation and was initiated prior to bone marrow egress. Notably, natural killer (NK) cell-derived IFN-γ promoted a regulatory program in monocyte progenitors during development. Early bone marrow NK cell activation was controlled by systemic interleukin-12 (IL-12) produced by Batf3-dependent dendritic cells (DCs) in the mucosal-associated lymphoid tissue (MALT). This work challenges the paradigm that monocyte function is dominantly imposed by local signals after tissue recruitment, and instead proposes a sequential model of differentiation in which monocytes are pre-emptively educated during development in the bone marrow to promote their tissue-specific function.
Asunto(s)
Células de la Médula Ósea/inmunología , Células Dendríticas/inmunología , Mucosa Intestinal/inmunología , Células Asesinas Naturales/inmunología , Leucocitos Mononucleares/inmunología , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Animales , Antígenos Ly/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Células de la Médula Ósea/parasitología , Diferenciación Celular , Células Cultivadas , Interferón gamma/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Mucosa Intestinal/parasitología , Células Asesinas Naturales/parasitología , Leucocitos Mononucleares/parasitología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Inmunológicos , Especificidad de Órganos/inmunología , Proteínas Represoras/genética , Proteínas Represoras/metabolismoRESUMEN
Regulatory T (Treg) cells are essential for maintenance of immune homeostasis. Here we found that hydrogen sulfide (H2S) was required for Foxp3(+) Treg cell differentiation and function and that H2S deficiency led to systemic autoimmune disease. H2S maintained expression of methylcytosine dioxygenases Tet1 and Tet2 by sulfhydrating nuclear transcription factor Y subunit beta (NFYB) to facilitate its binding to Tet1 and Tet2 promoters. Transforming growth factor-ß (TGF-ß)-activated Smad3 and interleukin-2 (IL-2)-activated Stat5 facilitated Tet1 and Tet2 binding to Foxp3. Tet1 and Tet2 catalyzed conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in Foxp3 to establish a Treg-cell-specific hypomethylation pattern and stable Foxp3 expression. Consequently, Tet1 and Tet2 deletion led to Foxp3 hypermethylation, impaired Treg cell differentiation and function, and autoimmune disease. Thus, H2S promotes Tet1 and Tet2 expression, which are recruited to Foxp3 by TGF-ß and IL-2 signaling to maintain Foxp3 demethylation and Treg-cell-associated immune homeostasis.
Asunto(s)
Colitis/inmunología , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción Forkhead/metabolismo , Sulfuro de Hidrógeno/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Linfocitos T Reguladores/inmunología , Traslado Adoptivo , Animales , Factor de Unión a CCAAT/metabolismo , Diferenciación Celular/genética , Colitis/genética , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Dioxigenasas , Factores de Transcripción Forkhead/genética , Homeostasis/genética , Homeostasis/inmunología , Humanos , Interleucina-2/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas/genética , Factor de Transcripción STAT5/metabolismo , Proteína smad3/metabolismo , Linfocitos T Reguladores/trasplante , Factor de Crecimiento Transformador beta/inmunologíaRESUMEN
BACKGROUND: COVID-19 is associated with a dysregulated immune response but it is unclear how immune dysfunction contributes to the chronic morbidity persisting in many COVID-19 patients during convalescence (long COVID). METHODS: We assessed phenotypical and functional changes of monocytes in COVID-19 patients during hospitalisation and up to 9â months of convalescence following COVID-19, respiratory syncytial virus or influenza A. Patients with progressive fibrosing interstitial lung disease were included as a positive control for severe, ongoing lung injury. RESULTS: Monocyte alterations in acute COVID-19 patients included aberrant expression of leukocyte migration molecules, continuing into convalescence (n=142) and corresponding with specific symptoms of long COVID. Long COVID patients with unresolved lung injury, indicated by sustained shortness of breath and abnormal chest radiology, were defined by high monocyte expression of C-X-C motif chemokine receptor 6 (CXCR6) (p<0.0001) and adhesion molecule P-selectin glycoprotein ligand 1 (p<0.01), alongside preferential migration of monocytes towards the CXCR6 ligand C-X-C motif chemokine ligand 16 (CXCL16) (p<0.05), which is abundantly expressed in the lung. Monocyte CXCR6 and lung CXCL16 were heightened in patients with progressive fibrosing interstitial lung disease (p<0.001), confirming a role for the CXCR6-CXCL16 axis in ongoing lung injury. Conversely, monocytes from long COVID patients with ongoing fatigue exhibited a sustained reduction of the prostaglandin-generating enzyme cyclooxygenase 2 (p<0.01) and CXCR2 expression (p<0.05). These monocyte changes were not present in respiratory syncytial virus or influenza A convalescence. CONCLUSIONS: Our data define unique monocyte signatures that define subgroups of long COVID patients, indicating a key role for monocyte migration in COVID-19 pathophysiology. Targeting these pathways may provide novel therapeutic opportunities in COVID-19 patients with persistent morbidity.
Asunto(s)
COVID-19 , Gripe Humana , Lesión Pulmonar , Humanos , Monocitos/metabolismo , Quimiocinas CXC/metabolismo , Receptores Virales/metabolismo , Receptores CXCR6 , Receptores de Quimiocina/metabolismo , Síndrome Post Agudo de COVID-19 , Ligandos , Convalecencia , Receptores Depuradores/metabolismo , Quimiocina CXCL16 , Gravedad del PacienteRESUMEN
The molecular mechanisms that direct transcription of the gene encoding the transcription factor Foxp3 in CD4(+) T cells remain ill-defined. We show here that deletion of the DNA-binding inhibitor Id3 resulted in the defective generation of Foxp3(+) regulatory T cells (T(reg) cells). We identify two transforming growth factor-ß1 (TGF-ß1)-dependent mechanisms that were vital for activation of Foxp3 transcription and were defective in Id3(-/-) CD4(+) T cells. Enhanced binding of the transcription factor E2A to the Foxp3 promoter promoted Foxp3 transcription. Id3 was required for relief of inhibition by the transcription factor GATA-3 at the Foxp3 promoter. Furthermore, Id3(-/-) T cells showed greater differentiation into the T(H)17 subset of helper T cells in vitro and in a mouse asthma model. Therefore, a network of factors acts in a TGF-ß-dependent manner to control Foxp3 expression and inhibit the development of T(H)17 cells.
Asunto(s)
Asma/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas Inhibidoras de la Diferenciación/metabolismo , Linfocitos T Reguladores/metabolismo , Células Th17/metabolismo , Animales , Asma/inducido químicamente , Asma/genética , Asma/inmunología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/genética , Proteínas Inhibidoras de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Eliminación de Secuencia/genética , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Células Th17/inmunología , Células Th17/patología , Activación Transcripcional/genética , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
The molecular mechanisms that direct the development of TCRαß+CD8αα+ intestinal intraepithelial lymphocytes (IELs) are not thoroughly understood. Here we show that transforming growth factor-ß (TGF-ß) controls the development of TCRαß+CD8αα+ IELs. Mice with either a null mutation in the gene encoding TGF-ß1 or T cell-specific deletion of TGF-ß receptor I lacked TCRαß+CD8αα+ IELs, whereas mice with transgenic overexpression of TGF-ß1 had a larger population of TCRαß+CD8αα+ IELs. We observed defective development of the TCRαß+CD8αα+ IEL thymic precursors (CD4â»CD8â»TCRαß+CD5+) in the absence of TGF-ß. In addition, we found that TGF-ß signaling induced CD8α expression in TCRαß+CD8αα+ IEL thymic precursors and induced and maintained CD8α expression in peripheral populations of T cells. Our data demonstrate a previously unrecognized role for TGF-ß in the development of TCRαß+CD8αα+ IELs and the expression of CD8α in T cells.
Asunto(s)
Antígenos CD8/metabolismo , Linfocitos/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Antígenos CD8/genética , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Proliferación Celular , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Citometría de Flujo , Expresión Génica/efectos de los fármacos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Recuento de Linfocitos , Linfocitos/citología , Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína smad3/genética , Proteína smad3/metabolismo , Timo/citología , Timo/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/farmacologíaRESUMEN
The oral mucosal barrier is constantly exposed to a plethora of triggers requiring immune control, including a diverse commensal microbiome, ongoing damage from mastication, and dietary and airborne antigens. However, how these tissue-specific cues participate in the training of immune responsiveness at this site is minimally understood. Moreover, the mechanisms mediating homeostatic immunity at this interface are not yet fully defined. Here we present basic aspects of the oral mucosal barrier and discuss local cues that may modulate and train local immune responsiveness. We particularly focus on the immune cell network mediating immune surveillance at a specific oral barrier, the gingiva - a constantly stimulated and dynamic environment where homeostasis is often disrupted, resulting in the common inflammatory disease periodontitis.
Asunto(s)
Inmunidad Mucosa , Microbiota/inmunología , Boca/inmunología , Periodontitis/inmunología , Animales , Interacciones Huésped-Parásitos , Humanos , Mucosa Intestinal , Especificidad de ÓrganosRESUMEN
γδ T cells are enriched at barrier sites such as the gut, skin, and lung, where their roles in maintaining barrier integrity are well established. However, how these cells contribute to homeostasis at the gingiva, a key oral barrier and site of the common chronic inflammatory disease periodontitis, has not been explored. Here we demonstrate that the gingiva is policed by γδ T cells with a T cell receptor (TCR) repertoire that diversifies during development. Gingival γδ T cells accumulated rapidly after birth in response to barrier damage, and strikingly, their absence resulted in enhanced pathology in murine models of the oral inflammatory disease periodontitis. Alterations in bacterial communities could not account for the increased disease severity seen in γδ T cell-deficient mice. Instead, gingival γδ T cells produced the wound healing associated cytokine amphiregulin, administration of which rescued the elevated oral pathology of tcrδ-/- mice. Collectively, our results identify γδ T cells as critical constituents of the immuno-surveillance network that safeguard gingival tissue homeostasis.
Asunto(s)
Anfirregulina/metabolismo , Homeostasis , Boca/inmunología , Periodontitis/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Subgrupos de Linfocitos T/inmunología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Boca/metabolismo , Periodontitis/metabolismo , Periodontitis/patología , Subgrupos de Linfocitos T/metabolismoRESUMEN
Monocyte-derived mononuclear phagocytes, particularly macrophages, are crucial to maintain gastrointestinal homeostasis in the steady state but are also important for protection against certain pathogens. However, when uncontrolled, they can promote immunopathology. Broadly two subsets of macrophages can be considered to perform the vast array of functions to complete these complex tasks: resident macrophages that dominate in the healthy gut and inflammation-elicited (inflammatory) macrophages that derive from circulating monocytes infiltrating inflamed tissue. Here, we discuss the features of resident and inflammatory intestinal macrophages, complexities in identifying and defining these populations and the mechanisms involved in their differentiation. In particular, focus will be placed on describing their unique ontogeny as well as local gastrointestinal signals that instruct specialisation of resident macrophages in healthy tissue. We then explore the very different roles of inflammatory macrophages and describe new data suggesting that they may be educated not only by the gut microenvironment but also by signals they receive during development in the bone marrow. Given the high degree of plasticity of gut macrophages and their multifaceted roles in both healthy and inflamed tissue, understanding the mechanisms controlling their differentiation could inform development of improved therapies for inflammatory diseases such as inflammatory bowel disease (IBD).
Asunto(s)
Homeostasis/fisiología , Inflamación/patología , Intestinos/patología , Intestinos/fisiología , Macrófagos/fisiología , Animales , Diferenciación Celular/fisiología , Humanos , Enfermedades Inflamatorias del Intestino/patologíaRESUMEN
Maintenance of immune tolerance critically depends upon regulatory T cells that express the transcription factor forkhead box P3 (Foxp3). These CD4(+) T cells can be generated in the thymus, termed thymus-derived regulatory T cells (tTregs), but their developmental pathway remains incompletely understood. tTreg development has been shown to be delayed compared with that of CD4(+) single positive (SP) thymocytes, with tTregs being detected only in neonatal thymi by day 3 after birth. Here, we outline the reasons for this delayed emergence of Foxp3(+) tTregs and demonstrate that thymocyte apoptosis is intrinsically tied to tTreg development. We show that thymic apoptosis leads to the production of TGFß intrathymically from thymic macrophages, dendritic cells, and epithelial cells. This TGFß then induces foxp3 expression and drives tTreg generation. Thymocyte apoptosis has previously been shown to accelerate after birth, which drives increases in TGFß in the neonatal thymus. We highlight a paucity of TGFß in the neonatal thymus, accounting for the delayed development of tTregs compared with CD4(+) SP thymocytes. Importantly, we show that enhanced levels of apoptosis in the thymus result in an augmented tTreg population and, moreover, that decreasing thymic apoptosis results in reduced tTregs. In addition to this, we also show that T-cell receptor (TCR) signals of different affinity were all capable of driving tTreg development; however, to achieve this TGFß signals must also be received concomitant with the TCR signal. Collectively, our results indicate that thymic apoptosis is a key event in tTreg generation and reveal a previously unrecognized apoptosis-TGFß-Foxp3 axis that mediates the development of tTregs.
Asunto(s)
Apoptosis , Linfocitos T Reguladores/inmunología , Timocitos/citología , Factor de Crecimiento Transformador beta/fisiología , Animales , Animales Recién Nacidos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Timocitos/inmunologíaRESUMEN
CD4(+) regulatory T cells expressing the transcription factor Foxp3 can be generated in the thymus (tTreg cells), but the cellular and molecular pathways driving their development remain incompletely understood. TGF-ß is essential for the generation of Foxp3(+) Treg cells converted from peripheral naïve CD4(+) T cells (pTreg cells), yet a role for TGF-ß in tTreg-cell development was initially refuted. Nevertheless, recent studies have unmasked a requirement for TGF-ß in the generation of tTreg cells. Experimental evidence reveals that TGF-ß in the context of TCR stimulation induces Foxp3 gene transcription in thymic Treg precursors, CD4(+) CD8(-) CD25(-) semimature and mature single-positive thymocytes. Intriguingly, thymic apoptosis was found to be intrinsically linked to the generation of tTreg cells, as apoptosis induced expression of TGF-ß intrathymically. In this short review, we will highlight key data, discuss the experimental evidence and propose a modified model of tTreg-cell development involving TGF-ß. We will also outline the remaining unresolved questions concerning generation of thymic Foxp3(+) Treg cells and provide our personal perspectives on the mechanisms controlling tTreg-cell development.
Asunto(s)
Apoptosis/inmunología , Factores de Transcripción Forkhead/metabolismo , Linfocitos T Reguladores/inmunología , Timo/inmunología , Factor de Crecimiento Transformador beta/inmunología , Diferenciación Celular/inmunología , Factores de Transcripción Forkhead/genética , Humanos , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T Reguladores/citología , Timocitos/inmunologíaRESUMEN
CD4(+) T-helper cells that selectively produce interleukin (IL)-17 (T(H)17), are critical for host defence and autoimmunity. Although crucial for T(H)17 cells in vivo, IL-23 has been thought to be incapable of driving initial differentiation. Rather, IL-6 and transforming growth factor (TGF)-ß1 have been proposed to be the factors responsible for initiating specification. Here we show that T(H)17 differentiation can occur in the absence of TGF-ß signalling. Neither IL-6 nor IL-23 alone efficiently generated T(H)17 cells; however, these cytokines in combination with IL-1ß effectively induced IL-17 production in naive precursors, independently of TGF-ß. Epigenetic modification of the Il17a, Il17f and Rorc promoters proceeded without TGF-ß1, allowing the generation of cells that co-expressed RORγt (encoded by Rorc) and T-bet. T-bet(+)RORγt(+) T(H)17 cells are generated in vivo during experimental allergic encephalomyelitis, and adoptively transferred T(H)17 cells generated with IL-23 without TGF-ß1 were pathogenic in this disease model. These data indicate an alternative mode for T(H)17 differentiation. Consistent with genetic data linking IL23R with autoimmunity, our findings re-emphasize the importance of IL-23 and therefore may have therapeutic implications.
Asunto(s)
Transducción de Señal , Células Th17/patología , Factor de Crecimiento Transformador beta , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Autoinmunidad/inmunología , Diferenciación Celular/efectos de los fármacos , Sistema Nervioso Central/patología , Inflamación , Interleucina-10 , Interleucina-17/metabolismo , Interleucina-1beta/inmunología , Interleucina-23/inmunología , Interleucina-23/farmacología , Interleucina-6/inmunología , Interleucina-9 , Interleucinas/biosíntesis , Ratones , Ratones Endogámicos C57BL , Membrana Mucosa/citología , Membrana Mucosa/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores de Interleucina/metabolismo , Células Th17/efectos de los fármacos , Células Th17/metabolismo , Interleucina-22RESUMEN
Transforming growth factor-ß (TGF-ß) receptors (TßRs) are essential components for TGF-ß signal transduction in T cells, yet the mechanisms by which the receptors are regulated remain poorly understood. We show here that Poly(ADP-ribose) polymerase-1 (PARP-1) regulates TGF-ß receptor I (TßRI) and II (TßRII) expression in CD4(+) T cells and subsequently affects Smad2/3-mediated TGF-ß signal transduction. Inhibition of PARP-1 led to the upregulation of both TßRI and TßRII, yet the underlying molecular mechanisms were distinct. PARP-1 selectively bound to the promoter of TßRII, whereas the enzymatic activity of PARP-1 was responsible for the inhibition of TßRI expression. Importantly, inhibition of PARP-1 also enhanced expression of TßRs in human CD4(+) T cells. Thus, PARP-1 regulates TßR expression and TGF-ß signaling in T cells.
Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/biosíntesis , Transducción de Señal/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/inmunología , Factor de Crecimiento Transformador beta1/inmunología , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
Induction of Foxp3 gene expression and acquisition of regulatory T cell fate is, understandably, a highly controlled process and one which many investigators want to illuminate. In studying the regulation of Foxp3 gene expression, several conserved non-coding regions have been identified and the role of various transcription factors at these sites has been explored. What emerges is that many factors, some positive, some negative, interact to collectively drive Foxp3 gene expression and then maintain its expression in Foxp3(+) regulatory T cells. TCR signaling is imperative for Foxp3 gene expression and TGF-ß is a key cytokine for initiating Foxp3 gene expression in naïve T cells. But other signaling pathways are also known to play a role in properly orchestrating Foxp3 gene expression and regulatory T cell expansion. Here we review the recent progress in understanding the complex molecular events that drive Foxp3 gene expression and allow functional regulatory T cells to develop.
Asunto(s)
Factores de Transcripción Forkhead/inmunología , Regulación de la Expresión Génica , Linfocitos T Reguladores/inmunología , Animales , Linaje de la Célula , Factores de Transcripción Forkhead/genética , Humanos , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismoRESUMEN
Three homologues of TGF-ß exist in mammals as follows: TGF-ß1, TGF-ß2, and TGF-ß3. All three proteins share high homology in their amino acid sequence, yet each TGF-ß isoform has unique heterologous motifs that are highly conserved during evolution. Although these TGF-ß proteins share similar properties in vitro, isoform-specific properties have been suggested through in vivo studies and by the unique phenotypes for each TGF-ß knock-out mouse. To test our hypothesis that each of these homologues has nonredundant functions, and to identify such isoform-specific roles, we genetically exchanged the coding sequence of the mature TGF-ß1 ligand with a sequence from TGF-ß3 using targeted recombination to create chimeric TGF-ß1/3 knock-in mice (TGF-ß1(Lß3/Lß3)). In the TGF-ß1(Lß3/Lß3) mouse, localization and activation still occur through the TGF-ß1 latent associated peptide, but cell signaling is triggered through the TGF-ß3 ligand that binds to TGF-ß receptors. Unlike TGF-ß1(-/-) mice, the TGF-ß1(Lß3/Lß3) mice show neither embryonic lethality nor signs of multifocal inflammation, demonstrating that knock-in of the TGF-ß3 ligand can prevent the vasculogenesis defects and autoimmunity associated with TGF-ß1 deficiency. However, the TGF-ß1(Lß3/Lß3) mice have a shortened life span and display tooth and bone defects, indicating that the TGF-ß homologues are not completely interchangeable. Remarkably, the TGF-ß1(Lß3/Lß3) mice display an improved metabolic phenotype with reduced body weight gain and enhanced glucose tolerance by induction of beneficial changes to the white adipose tissue compartment. These findings reveal both redundant and unique nonoverlapping functional diversity in TGF-ß isoform signaling that has relevance to the design of therapeutics aimed at targeting the TGF-ß pathway in human disease.
Asunto(s)
Glucosa/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo , Animales , Células COS , Chlorocebus aethiops , Técnicas de Sustitución del Gen , Glucosa/genética , Células Hep G2 , Humanos , Inflamación/genética , Inflamación/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Neovascularización Fisiológica/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Porcinos , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta3/genéticaRESUMEN
Immune cells residing at the gingiva experience diverse and unique signals, tailoring their functions to enable them to appropriately respond to immunological challenges and maintain tissue integrity. The gingiva, defined as the mucosal barrier that surrounds and supports the teeth, is the only barrier site completely transected by a hard structure, the tooth. The tissue is damaged in early life during tooth eruption and chronically throughout life by the process of mastication. This occurs alongside challenges typical of barrier sites, including exposure to invading pathogens, the local commensal microbial community and environmental antigens. This review will focus on the immune network safeguarding gingival integrity, which is far less understood than that resident at other barrier sites. A detailed understanding of the gingiva-resident immune network is vital as it is the site of the inflammatory disease periodontitis, the most common chronic inflammatory condition in humans which has well-known detrimental systemic effects. Furthering our understanding of how the immune populations within the gingiva develop, are tailored in health, and how this is dysregulated in disease would further the development of effective therapies for periodontitis.
Asunto(s)
Encía , Microbiota , Humanos , Encía/inmunología , Encía/microbiología , Animales , Microbiota/inmunología , Periodontitis/inmunología , Periodontitis/microbiología , Inmunidad MucosaRESUMEN
The oral microbiome is influenced by environmental factors in chronic kidney disease and following kidney transplantation affecting microbial composition, which may have implications for health and recovery. A major driver of oral microbiome perturbation is the accumulation of urea in saliva. We have modelled increased salivary urea concentrations associated with CKD and subsequent reductions that may occur post-transplantation. Oral microbiota were established in constant-depth film fermenters by inoculation with saliva. Duplicate validation runs were maintained with artificial saliva with baseline urea concentrations (0.205 mg/mL) for 21 days. Triplicate treatment runs were then done with baseline urea for 10 days (healthy phase) before urea was increased for 10 days to reflect CKD concentrations (0.92 mg/mL) (CKD phase). This was followed by reversion to baseline urea concentrations (post-transplant phase). Biofilms in primary validation runs reached dynamic stability within 5 days according to viable counting. DNA sequence data indicated minimal taxonomic variation over time and between low and high urea treatments despite background noise indicating changes in bacteria belonging to the family Gemellaceae and the genera TG5 and Leptotrichia. Significant differences in alpha and beta diversity occurred between low and high urea states but not following reversion to a low urea environment. Increased abundance of the TG5 was detected in late model phases, despite apparent count stability, and independent of changes in urea concentrations. IMPORTANCE: This study investigates dynamic changes in the oral microbiome associated with changes in salivary urea concentration, an important factor in chronic kidney disease (CKD). The in vitro system modeled increased urea concentrations and subsequent reductions post-transplantation. The study provides insight into the oral microbial shifts during different simulated clinical phases. Understanding these dynamics is crucial for advancing our comprehension of CKD-associated oral microbiome variations and their potential impact on patient well-being and recovery.