Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
2.
Nature ; 578(7795): 444-448, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31875646

RESUMEN

Metformin, the world's most prescribed anti-diabetic drug, is also effective in preventing type 2 diabetes in people at high risk1,2. More than 60% of this effect is attributable to the ability of metformin to lower body weight in a sustained manner3. The molecular mechanisms by which metformin lowers body weight are unknown. Here we show-in two independent randomized controlled clinical trials-that metformin increases circulating levels of the peptide hormone growth/differentiation factor 15 (GDF15), which has been shown to reduce food intake and lower body weight through a brain-stem-restricted receptor. In wild-type mice, oral metformin increased circulating GDF15, with GDF15 expression increasing predominantly in the distal intestine and the kidney. Metformin prevented weight gain in response to a high-fat diet in wild-type mice but not in mice lacking GDF15 or its receptor GDNF family receptor α-like (GFRAL). In obese mice on a high-fat diet, the effects of metformin to reduce body weight were reversed by a GFRAL-antagonist antibody. Metformin had effects on both energy intake and energy expenditure that were dependent on GDF15, but retained its ability to lower circulating glucose levels in the absence of GDF15 activity. In summary, metformin elevates circulating levels of GDF15, which is necessary to obtain its beneficial effects on energy balance and body weight, major contributors to its action as a chemopreventive agent.


Asunto(s)
Peso Corporal/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Factor 15 de Diferenciación de Crecimiento/metabolismo , Metformina/farmacología , Administración Oral , Adulto , Anciano , Animales , Glucemia/análisis , Glucemia/metabolismo , Dieta Alta en Grasa , Método Doble Ciego , Ingestión de Energía/efectos de los fármacos , Enterocitos/citología , Enterocitos/efectos de los fármacos , Femenino , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/antagonistas & inhibidores , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/deficiencia , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor 15 de Diferenciación de Crecimiento/sangre , Factor 15 de Diferenciación de Crecimiento/deficiencia , Factor 15 de Diferenciación de Crecimiento/genética , Homeostasis/efectos de los fármacos , Humanos , Intestinos/citología , Intestinos/efectos de los fármacos , Masculino , Metformina/administración & dosificación , Ratones , Ratones Obesos , Persona de Mediana Edad , Pérdida de Peso/efectos de los fármacos
3.
BMC Biol ; 21(1): 287, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066609

RESUMEN

Physical activity and several pharmacological approaches individually combat age-associated conditions and extend healthy longevity in model systems. It is tantalizing to extrapolate that combining geroprotector drugs with exercise could extend healthy longevity beyond any individual treatment. However, the current dogma suggests that taking leading geroprotector drugs on the same day as exercise may limit several health benefits. Here, we review leading candidate geroprotector drugs and their interactions with exercise and highlight salient gaps in knowledge that need to be addressed to identify if geroprotector drugs can have a harmonious relationship with exercise.


Asunto(s)
Longevidad , Senoterapéuticos , Humanos , Ejercicio Físico , Envejecimiento
4.
J Aging Phys Act ; 28(6): 813-821, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32470921

RESUMEN

This study examined the feasibility and effects of a 1-hr physical activity (PA) behavior change (PABC) discussion session on PA, 12 weeks after completing an exercise trial. Adults at high risk of Type II diabetes were randomized to the PABC or a control group. PA was self-reported using the International Physical Activity Questionnaire. Chi-square tests compared the proportion of participants classified as moderately active or greater at the 12-week follow-up. Participants (N = 50) were M = 61.8 ± 5.5 years old and mostly female (80%). All participants completed the PABC discussion session, and compliance with the International Physical Activity Questionnaire at 12-week follow-up was 78%. Barrier self-efficacy increased immediately following the PABC (MΔ0.5 ± 0.9; t(22) = -2.45, p = .023). At 12-week follow-up, 88% in the PABC were moderately active or greater, compared with 50% in the control (p = .015). Incorporating a PABC discussion session as part of an exercise efficacy trial was feasible and may help improve PA maintenance.

5.
Am J Physiol Regul Integr Comp Physiol ; 315(3): R461-R468, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29718700

RESUMEN

Intermuscular adipose tissue (IMAT) is associated with impaired skeletal muscle contractile and metabolic function. Myostatin and downstream signaling proteins such as cyclin-dependent kinase 2 (CDK2) contribute to the regulation of adipose and skeletal muscle mass in cell culture and animals models, but this relationship remains incompletely understood in humans. The purpose of this study was to determine if the infiltration of IMAT was associated with skeletal muscle myostatin and downstream proteins before and after 12 wk of aerobic exercise training (AET) in healthy older women (OW; 69 ± 2 yr), older men (OM; 74 ± 3 yr), and young men (YM; 20 ± 1 yr). We found that the infiltration of IMAT was correlated with myostatin and phosphorylated CDK2 at tyrosine 15 [P-CDK2(Tyr15)]. IMAT infiltration was greater in the older subjects and was associated with lower skeletal muscle function and exercise capacity. After 12 wk of AET, there was no change in body weight. Myostatin and P-CDK2(Tyr15) were both decreased after AET, and the reduction in myostatin was associated with decreased IMAT infiltration. The decrease in myostatin and IMAT occurred concomitantly with increased exercise capacity, skeletal muscle size, and function after AET. These findings demonstrate that the reduction in IMAT infiltration after AET in weight stable individuals was accompanied by improvements in skeletal muscle function and exercise capacity. Moreover, the association between myostatin and IMAT was present in the untrained state and in response to exercise training, strengthening the potential regulatory role of myostatin on IMAT.


Asunto(s)
Tejido Adiposo/fisiología , Adiposidad , Ejercicio Físico/fisiología , Contracción Muscular , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Tejido Adiposo/diagnóstico por imagen , Factores de Edad , Anciano , Ciclismo , Biomarcadores , Biopsia , Quinasa 2 Dependiente de la Ciclina/metabolismo , Prueba de Esfuerzo , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Fuerza Muscular , Músculo Esquelético/diagnóstico por imagen , Fosforilación , Conducta Sedentaria , Factores de Tiempo , Adulto Joven
6.
Am J Physiol Regul Integr Comp Physiol ; 312(3): R426-R433, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28039193

RESUMEN

The purpose of this investigation was to examine the influence of short-term intense endurance training on cycling performance, along with the acute and chronic signaling responses of skeletal muscle stress and stability markers. Ten recreationally active subjects (25 ± 2 yr, 79 ± 3 kg, 47 ± 2 ml·kg-1·min-1) were studied before and after a 12-day cycling protocol to examine the effects of short-term intense (70-100% V̇o2max) exercise training on resting and exercise-induced regulation of molecular factors related to skeletal muscle cellular stress and protein stability. Skeletal muscle biopsies were taken at rest and 3 h following a 20-km cycle time trial on days 1 and 12 to measure mRNA expression and protein content. Training improved (P < 0.05) cycling performance by 5 ± 1%. Protein oxidation was unaltered on day 12, while resting SAPK/JNK phosphorylation was reduced (P < 0.05), suggesting a reduction in cellular stress. The maintenance in the myocellular environment may be due to synthesis of cytoprotective markers, along with enhanced degradation of damage proteins, as training tended (P < 0.10) to increase resting protein content of manganese superoxide dismutase and heat shock protein 70 (HSP70), while mRNA expression of MuRF-1 was elevated (P < 0.05). Following training (day 12), the acute exercise-induced transcriptional response of TNF-α, NF-κB, MuRF-1, and PGC1α was attenuated (P < 0.05) compared with day 1 Collectively, these data suggest that short-term intense training enhances protein stability, creating a cellular environment capable of resistance to exercise-induced stress, which may be favorable for adaptation.


Asunto(s)
Ejercicio Físico/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiología , Resistencia Física/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma/fisiología , Adaptación Fisiológica/fisiología , Adulto , Biomarcadores/metabolismo , Femenino , Regulación de la Expresión Génica/fisiología , Entrenamiento de Intervalos de Alta Intensidad/métodos , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Músculo Esquelético/citología , Estrés Oxidativo/fisiología , Acondicionamiento Físico Humano/métodos , Activación Transcripcional/fisiología
7.
Exerc Sport Sci Rev ; 42(2): 53-61, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24508740

RESUMEN

Current dogma suggests that aerobic exercise training has minimal effects on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise countermeasures for populations prone to muscle loss.


Asunto(s)
Ejercicio Físico/fisiología , Músculo Esquelético/anatomía & histología , Adaptación Fisiológica , Envejecimiento/fisiología , Humanos , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Entrenamiento de Fuerza
8.
Int J Sport Nutr Exerc Metab ; 24(1): 70-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23980254

RESUMEN

We previously reported an increase in skeletal muscle protein synthesis during fasted and fed recovery from nonexhaustive aerobic exercise (Harber et al., 2010). The current study examined skeletal muscle intracellular signaling in the same subjects to further investigate mechanisms of skeletal muscle protein metabolism with and without feeding following aerobic exercise. Eight males (VO2peak: 52 ± 2 ml⁻¹·kg⁻¹·min⁻¹) performed 60-min of cycle ergometry at 72 ± 1% VO2peak on two occasions in a counter-balanced design. Exercise trials differed only in the postexercise nutritional intervention: EX-FED (5 kcal, 0.83 g carbohydrate, 0.37 g protein, 0.03 g fat per kg body weight) and EX-FAST (noncaloric, isovolumic placebo) ingested immediately and one hour after exercise. Muscle biopsies were obtained from the vastus lateralis at rest (on a separate day) and two hours postexercise to assess intracellular signaling via western blotting of p70S6K1, eEF2, 4EBP1, AMPKα and p38 MAPK. p70S6K1 phosphorylation was elevated (p < .05) in EX-FED relative to REST and EX-FAST. eEF2, 4EBP1, AMPKα and p38 MAPK signaling were unaltered at 2 h after exercise independent of feeding status when expressed as the ratio of phosphorylated to total protein normalized to actin. These data demonstrate that feeding after a nonexhaustive bout of aerobic exercise stimulates skeletal muscle p70S6K1 intracellular signaling favorable for promoting protein synthesis which may, as recent literature has suggested, better prepare the muscle for subsequent exercise bouts. These data provide further support into the role of feeding on mechanisms regulating muscle protein metabolism during recovery from aerobic exercise.


Asunto(s)
Ingestión de Energía/fisiología , Ejercicio Físico/fisiología , Ayuno/fisiología , Proteínas Musculares/metabolismo , Músculo Cuádriceps/fisiología , Descanso/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Ciclismo/fisiología , Biopsia , Ingestión de Alimentos , Humanos , Masculino , Factor 2 de Elongación Peptídica/metabolismo , Fosforilación , Músculo Cuádriceps/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Adulto Joven , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Geroscience ; 46(3): 2827-2847, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38466454

RESUMEN

Age-related osteoarthritis (OA) is a degenerative joint disease characterized by pathological changes in nearly every intra- and peri-articular tissue that contributes to disability in older adults. Studying the etiology of age-related OA in humans is difficult due to an unpredictable onset and insidious nature. A barrier in developing OA modifying therapies is the lack of translational models that replicate human joint anatomy and age-related OA progression. The purpose of this study was to determine whether the common marmoset is a faithful model of human age-related knee OA. Semi-quantitative microCT scoring revealed greater radiographic OA in geriatric versus adult marmosets, and the age-related increase in OA prevalence was similar between marmosets and humans. Quantitative assessments indicate greater medial tibial cortical and trabecular bone thickness and heterogeneity in geriatric versus adult marmosets which is consistent with an age-related increase in focal subchondral bone sclerosis. Additionally, marmosets displayed an age-associated increase in synovitis and calcification of the meniscus and patella. Histological OA pathology in the medial tibial plateau was greater in geriatric versus adult marmosets driven by articular cartilage damage, proteoglycan loss, and altered chondrocyte cellularity. The age-associated increase in medial tibial cartilage OA pathology and meniscal calcification was greater in female versus male geriatric marmosets. Overall, marmosets largely replicate human OA as evident by similar 1) cartilage and skeletal morphology, 2) age-related progression in OA pathology, and 3) sex differences in OA pathology with increasing age. Collectively, these data suggest that the common marmoset is a highly translatable model of the naturally occurring, age-related OA seen in humans.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Animales , Masculino , Femenino , Humanos , Anciano , Callithrix , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/epidemiología , Osteoartritis de la Rodilla/patología , Articulación de la Rodilla/patología , Cartílago Articular/patología , Tibia/diagnóstico por imagen , Tibia/patología
10.
bioRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798488

RESUMEN

Objective: Pharmacologic inhibition of the mechanistic target of rapamycin (mTOR) can attenuate experimental osteoarthritis (OA) in young, male preclinical models. However, the potential of mTOR inhibition as a therapeutic mechanism for OA remains unknown. The goal of this study was to determine if mTOR-inhibition by oral rapamycin can modify OA pathology in the common marmoset, a translational model of age-associated OA. Methods: microCT and histopathologic assessments of the knee were performed on formalin-fixed hindlimbs obtained from common marmosets treated with oral rapamycin (n=24; 1mg/kg/day) or parallel control group (n=41). Rapamycin started at 9.2±3.0 years old and lasted until death (2.1±1.5 years). In a subset of marmosets, contralateral hind limbs were collected to determine mTOR signaling in several joint tissues. Results: Rapamycin decreased P-RPS6Ser235/36 and increased P-Akt2Ser473 in cartilage, meniscus, and infrapatellar fat pad, suggesting inhibition of mTORC1 but not mTORC2 signaling. Rapamycin-treated marmosets had lower lateral synovium score versus control but there was no difference in the age-related increase in microCT or cartilage OA scores. Subchondral bone thickness and thickness variability were not different with age but were lower in rapamycin-treated geriatric marmosets, which was largely driven by females. Rapamycin also tended to worsen age-related meniscus calcification in female marmosets. Conclusion: Oral rapamycin attenuated mTORC1 signaling and may have caused feedback activation of mTORC2 signaling in joint tissues. Despite modifying site-specific aspects of synovitis, rapamycin did not modify the age-associated increase in OA in geriatric marmosets. Conversely, rapamycin may have had deleterious effects on meniscus calcification and lateral tibia subchondral bone, primarily in geriatric female marmosets.

11.
Artículo en Inglés | MEDLINE | ID: mdl-37804247

RESUMEN

The geroscience hypothesis suggests that addressing the fundamental mechanisms driving aging biology will prevent or mitigate the onset of multiple chronic diseases, for which the largest risk factor is advanced age. Research that investigates the root causes of aging is therefore of critical importance given the rising healthcare burden attributable to age-related diseases. The third annual Midwest Aging Consortium symposium was convened as a showcase of such research performed by investigators from institutions across the Midwestern United States. This report summarizes the work presented during a virtual conference across topics in aging biology, including immune function in the lung-particularly timely given the Corona Virus Immune Disease-2019 pandemic-along with the role of metabolism and nutrient-regulated pathways in cellular function with age, the influence of senescence on stem cell function and inflammation, and our evolving understanding of the mechanisms underlying observation of sex dimorphism in aging-related outcomes. The symposium focused on early-stage and emerging investigators, while including keynote presentations from leaders in the biology of aging field, highlighting the diversity and strength of aging research in the Midwest.


Asunto(s)
Envejecimiento , Afecciones Crónicas Múltiples , Humanos , Envejecimiento/fisiología , Inflamación , Pulmón , Gerociencia
12.
Geroscience ; 45(5): 2769-2783, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37801202

RESUMEN

Treatment with rapamycin, an inhibitor of the mechanistic Target Of Rapamycin Complex One (mTORC1) protein kinase, has been repeatedly demonstrated to extend lifespan and prevent or delay age-related diseases in diverse model systems. Concerns over the risk of potentially serious side effects in humans, including immunosuppression and metabolic disruptions, have cautiously limited the translation of rapamycin and its analogs as a treatment for aging associated conditions. During the last decade, we and others have developed a working model that suggests that while inhibition of mTORC1 promotes healthy aging, many of the negative side effects of rapamycin are associated with "off-target" inhibition of a second mTOR complex, mTORC2. Differences in the kinetics and molecular mechanisms by which rapamycin inhibits mTORC1 and mTORC2 suggest that a therapeutic window for rapamycin could be exploited using intermittent dosing schedules or alternative rapalogs that may enable more selective inhibition of mTORC1. However, the optimal dosing schedules and the long-term efficacy of such interventions in humans are unknown. Here, we highlight ongoing or upcoming clinical trials that will address outstanding questions regarding the safety, pharmacokinetics, pharmacodynamics, and efficacy of rapamycin and rapalogs on several clinically oriented outcomes. Results from these early phase studies will help guide the design of phase 3 clinical trials to determine whether rapamycin can be used safely to inhibit mTORC1 for the treatment and prevention of age-related diseases in humans.


Asunto(s)
Senoterapéuticos , Sirolimus , Humanos , Sirolimus/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Inhibidores mTOR , Diana Mecanicista del Complejo 2 de la Rapamicina
13.
Physiol Rep ; 11(16): e15781, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37606179

RESUMEN

Cycling exercise in older individuals is beneficial for the cardiovascular system and quadriceps muscles, including partially reversing the age-related loss of quadriceps muscle mass. However, the effect of cycling exercise on the numerous other lower limb muscles is unknown. Six older men (74 ± 8 years) underwent MRI before and after 12-weeks of progressive aerobic cycle exercise training (3-4 days/week, 60-180 min/week, 60%-80% heart rate reserve, VO2 max: +13%) for upper (rectus femoris, vastii, adductor longus, adductor magnus, gracilis, sartorius, biceps femoris long head, biceps femoris short head, semimembranosus, semitendinosus) and lower (anterior tibial, posterior tibialis, peroneals, flexor digitorum longus, lateral gastrocnemius, medial gastrocnemius, soleus) leg muscle volumes. In the upper leg, cycle exercise training induced hypertrophy (p ≤ 0.05) in the vastii (+7%) and sartorius (+6%), with a trend to increase biceps femoris short head (+5%, p = 0.1). Additionally, there was a trend to decrease muscle volume in the adductor longus (-6%, p = 0.1) and biceps femoris long head (-5%, p = 0.09). In the lower leg, all 7 muscle volumes assessed were unaltered pre- to post-training (-2% to -3%, p > 0.05). This new evidence related to cycle exercise training in older individuals clarifies the specific upper leg muscles that are highly impacted, while revealing all the lower leg muscles do not appear responsive, in the context of muscle mass and sarcopenia. This study provides information for exercise program development in older individuals, suggesting other specific exercises are needed for the rectus femoris and adductors, certain hamstrings, and the anterior and posterior lower leg muscles to augment the beneficial effects of cycling exercise for older adults.


Asunto(s)
Músculos Isquiosurales , Extremidad Inferior , Masculino , Humanos , Anciano , Pierna , Músculo Cuádriceps/diagnóstico por imagen , Ejercicio Físico
14.
Elife ; 122023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38019262

RESUMEN

Low-protein (LP) diets extend the lifespan of diverse species and are associated with improved metabolic health in both rodents and humans. Paradoxically, many athletes and bodybuilders consume high-protein (HP) diets and protein supplements, yet are both fit and metabolically healthy. Here, we examine this paradox using weight pulling, a validated progressive resistance exercise training regimen, in mice fed either an LP diet or an isocaloric HP diet. We find that despite having lower food consumption than the LP group, HP-fed mice gain significantly more fat mass than LP-fed mice when not exercising, while weight pulling protected HP-fed mice from this excess fat accretion. The HP diet augmented exercise-induced hypertrophy of the forearm flexor complex, and weight pulling ability increased more rapidly in the exercised HP-fed mice. Surprisingly, exercise did not protect from HP-induced changes in glycemic control. Our results confirm that HP diets can augment muscle hypertrophy and accelerate strength gain induced by resistance exercise without negative effects on fat mass, and also demonstrate that LP diets may be advantageous in the sedentary. Our results highlight the need to consider both dietary composition and activity, not simply calories, when taking a precision nutrition approach to health.


Asunto(s)
Dieta Rica en Proteínas , Entrenamiento de Fuerza , Humanos , Animales , Ratones , Control Glucémico , Cadherinas , Hipertrofia
15.
J Gerontol A Biol Sci Med Sci ; 77(12): 2373-2377, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-34865016

RESUMEN

The antidiabetic medication metformin has been proposed to be the first drug tested to target aging and extend healthspan in humans. While there is extensive epidemiological support for the health benefits of metformin in patient populations, it is not clear if these protective effects apply to those free of age-related disease. Our previous data in older adults without diabetes suggest a dichotomous change in insulin sensitivity and skeletal muscle mitochondrial adaptations after metformin treatment when co-prescribed with exercise. Those who entered the study as insulin-sensitive had no change to detrimental effects while those who were insulin-resistant had positive changes. The objective of this clinical trial is to determine if (a) antecedent metabolic health and (b) skeletal muscle mitochondrial remodeling and function mediate the positive or detrimental effects of metformin monotherapy, independent of exercise, on the metabolism and biology of aging. In a randomized, double-blind clinical trial, adults free of chronic disease (n = 148, 40-75 years old) are stratified as either insulin-sensitive or resistant based on homeostatic model assessment of insulin resistance (≤2.2 or ≥2.5) and take 1 500 mg/day of metformin or placebo for 12 weeks. Hyperinsulinemic-euglycemic clamps and skeletal muscle biopsies are performed before and after 12 weeks to assess primary outcomes of peripheral insulin sensitivity and mitochondrial remodeling and function. Findings from this trial will identify clinical characteristics and cellular mechanisms involved in modulating the effectiveness of metformin treatment to target aging that could inform larger Phase 3 clinical trials aimed at testing aging as a treatment indication for metformin. Clinical Trials Registration Number: NCT04264897.


Asunto(s)
Resistencia a la Insulina , Metformina , Humanos , Anciano , Metformina/farmacología , Metformina/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Envejecimiento , Insulina , Método Doble Ciego
16.
J Appl Physiol (1985) ; 133(3): 572-584, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35834627

RESUMEN

Skeletal muscle aging is a multidimensional pathology of atrophy, reduced strength, and oxidative damage. Although some molecular targets may mediate both hypertrophic and oxidative adaptations in muscle, their responsiveness in humans and relationship with functional outcomes like strength remain unclear. Promising therapeutic targets to combat muscle aging like apelin, vitamin D receptor (VDR), and spermine oxidase (SMOX) have been investigated in preclinical models but the adaptive response in humans is not well defined. In an exploratory investigation, we examined how strength gains with resistance training relate to regulators of both muscle mass and oxidative function in middle-aged adults. Forty-one middle-aged adults [18 male (M), 23 female (F); 50 ± 7 yr; 27.8 ± 3.7 kg/m2; means ± SD] participated in a 10-wk resistance training intervention. Muscle biopsies and plasma were sampled at baseline and postintervention. High-resolution fluo-respirometry was performed on a subset of muscle tissue. Apelin signaling (plasma apelin, P = 0.002; Apln mRNA, P < 0.001; apelin receptor mRNA Aplnr, P = 0.001) increased with resistance training. Muscle Vdr mRNA (P = 0.007) and Smox mRNA (P = 0.027) were also upregulated after the intervention. Mitochondrial respiratory capacity increased (Vmax, oxidative phosphorylation, and uncoupled electron transport system, P < 0.050), yet there were no changes in ADP sensitivity (Km P = 0.579), hydrogen peroxide emission (P = 0.469), nor transcriptional signals for mitochondrial biogenesis (nuclear respiratory factor 2, Gapba P = 0.766) and mitofusion (mitochondrial dynamin-like GTPase, Opa1 P = 0.072). Muscular strength with resistance training positively correlated to Apln, Aplnr, Vdr, and Smox transcriptional adaptations, as well as mitochondrial respiratory capacity (unadjusted P < 0.050, r = 0.400-0.781). Further research is required to understand the interrelationships of these targets with aged muscle phenotype.NEW & NOTEWORTHY Although some therapeutic targets may ameliorate hypertrophic and oxidative dysfunction with muscle aging in preclinical models, their responsiveness in human muscle remains unclear. We demonstrated that resistance training concurrently upregulated therapeutic targets of muscle aging and mitochondrial respiratory capacity, which positively correlated to strength gains. Specifically, we are the first to demonstrate that apelin and spermine oxidase are upregulated with resistance training in humans. Our work corroborates preclinical observations, with future work required for clinical efficacy.


Asunto(s)
Mitocondrias , Fuerza Muscular , Entrenamiento de Fuerza , Adulto , Apelina , Receptores de Apelina , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Músculo Esquelético/fisiología , ARN Mensajero
17.
Nutrients ; 14(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36364934

RESUMEN

ß-Hydroxy-ß-methylbutyrate (HMB), a leucine metabolite, can increase skeletal muscle size and function. However, HMB may be less effective at improving muscle function in people with insufficient Vitamin D3 (25-OH-D < 30 ng/mL) which is common in middle-aged and older adults. Therefore, we tested the hypothesis that combining HMB plus Vitamin D3 (HMB + D) supplementation would improve skeletal muscle size, composition, and function in middle-aged women. In a double-blinded fashion, women (53 ± 1 yrs, 26 ± 1 kg/m2, n = 43) were randomized to take placebo or HMB + D (3 g Calcium HMB + 2000 IU D per day) during 12 weeks of sedentary behavior (SED) or resistance exercise training (RET). On average, participants entered the study Vitamin D3 insufficient while HMB + D increased 25-OH-D to sufficient levels after 8 and 12 weeks. In SED, HMB + D prevented the loss of arm lean mass observed with placebo. HMB + D increased muscle volume and decreased intermuscular adipose tissue (IMAT) volume in the thigh compared to placebo but did not change muscle function. In RET, 12-weeks of HMB + D decreased IMAT compared to placebo but did not influence the increase in skeletal muscle volume or function. In summary, HMB + D decreased IMAT independent of exercise status and may prevent the loss or increase muscle size in a small cohort of sedentary middle-aged women. These results lend support to conduct a longer duration study with greater sample size to determine the validity of the observed positive effects of HMB + D on IMAT and skeletal muscle in a small cohort of middle-aged women.


Asunto(s)
Colecalciferol , Fuerza Muscular , Humanos , Persona de Mediana Edad , Femenino , Anciano , Colecalciferol/farmacología , Suplementos Dietéticos , Músculo Esquelético , Método Doble Ciego
18.
Pediatr Exerc Sci ; 23(3): 344-54, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21881155

RESUMEN

Carbohydrate (CHO) consumption before anaerobic exercise was studied in 13 adolescent boys (15.2 ± 0.9 yrs). A within subjects design was employed where subjects consumed a 22% CHO or volume-matched placebo (PL) beverage 30-min before anaerobic exercise on two separate days. Exercise consisted of a Wingate Anaerobic Test (WAnT), ten by 10-s-sprints, and a second WAnT. Fatigue index and peak power (PP) were similar while mean power (MP) was higher (p < .025) in CHO trial; however this difference was ascribed to initial WAnT performance. PP and MP for the 10-s sprints were similar between trials. Intravenous blood glucose and insulin concentrations were higher (p < .05) in the CHO trial while lactate and catecholamine concentrations were similar. Improved performance on a single WAnT was apparent with CHO consumption before exercise; however, this strategy did not attenuate fatigue over time in adolescent boys.


Asunto(s)
Umbral Anaerobio/fisiología , Carbohidratos de la Dieta/administración & dosificación , Suplementos Dietéticos , Prueba de Esfuerzo , Carrera/fisiología , Adolescente , Análisis de Varianza , Glucemia , Carbohidratos de la Dieta/metabolismo , Carbohidratos de la Dieta/uso terapéutico , Frecuencia Cardíaca , Humanos , Insulina/sangre , Masculino , Análisis y Desempeño de Tareas , Factores de Tiempo
19.
Exp Gerontol ; 155: 111579, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34601078

RESUMEN

A decline in skeletal muscle mitochondrial function is associated with the loss of skeletal muscle size and function during knee osteoarthritis (OA). We have recently reported that 12-weeks of dietary rapamycin (Rap, 14 ppm), with or without metformin (Met, 1000 ppm), increased plasma glucose and OA severity in male Dunkin Hartley (DH) guinea pigs, a model of naturally occurring, age-related OA. The purpose of the current study was to determine if increased OA severity after dietary Rap and Rap+Met was accompanied by impaired skeletal muscle mitochondrial function. Mitochondrial respiration and hydrogen peroxide (H2O2) emissions were evaluated in permeabilized muscle fibers via high-resolution respirometry and fluorometry using either a saturating bolus or titration of ADP. Rap and Rap+Met decreased complex I (CI)-linked respiration and tended to increase ADP sensitivity, consistent with previous findings in patients with end-stage OA. The decrease in CI-linked respiration was accompanied with lower CI protein abundance. Rap and Rap+Met did not change mitochondrial H2O2 emissions. There were no differences between mitochondrial function in Rap versus Rap+Met suggesting that Rap was likely driving the change in mitochondrial function. This is the first inquiry into how lifespan extending treatments Rap and Rap+Met can influence skeletal muscle mitochondria in a model of age-related OA. Collectively, our data suggest that Rap with or without Met inhibits CI-linked capacity and increases ADP sensitivity in DH guinea pigs that have greater OA severity.


Asunto(s)
Osteoartritis de la Rodilla , Sirolimus , Animales , Respiración de la Célula , Cobayas , Humanos , Peróxido de Hidrógeno/metabolismo , Masculino , Mitocondrias/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Osteoartritis de la Rodilla/metabolismo , Respiración
20.
Arthritis Res Ther ; 23(1): 253, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620223

RESUMEN

BACKGROUND: The objective of this study was to determine if mechanistic target of rapamycin (mTOR) inhibition with or without AMP-activated protein kinase (AMPK) activation can protect against primary, age-related OA. DESIGN: Dunkin-Hartley guinea pigs develop mild primary OA pathology by 5 months of age that progresses to moderate OA by 8 months of age. At 5 months, guinea pigs served as young control (n = 3) or were fed either a control diet (n = 8), a diet enriched with the mTOR-inhibitor rapamycin (Rap, 14 ppm, n = 8), or Rap with the AMPK-activator metformin (Rap+Met, 1000 ppm, n = 8) for 12 weeks. Knee joints were evaluated by OARSI scoring, micro-computed tomography, and immunohistochemistry. Glenohumeral articular cartilage was collected for western blotting. RESULTS: Rap- and Rap+Met-treated guinea pigs displayed lower body weight than control. Rap and Rap+Met inhibited articular cartilage mTORC1 but not mTORC2 signaling. Rap+Met, but not Rap alone, stimulated AMPK. Despite lower body weight and articular cartilage mTORC1 inhibition, Rap- and Rap+Met-treated guinea pigs had greater OA severity in the medial tibial plateau due to articular cartilage structural damage and/or proteoglycan loss. Rap and Rap+Met increased plasma glucose compared to control. Plasma glucose concentration was positively correlated with proteoglycan loss, suggesting hyperglycemic stress after Rap treatment was related to worsened OA. CONCLUSIONS: This is the first study to show that Rap induced increase in plasma glucose was associated with greater OA severity. Further, articular cartilage mTORC1 inhibition and bodyweight reduction by dietary Rap and Rap+Met did not appear to protect against primary OA during the prevailing hyperglycemia.


Asunto(s)
Cartílago Articular , Hiperglucemia , Osteoartritis , Animales , Cobayas , Hiperglucemia/inducido químicamente , Osteoartritis/inducido químicamente , Sirolimus/toxicidad , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA