Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(4): 712-728.e14, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35063084

RESUMEN

Tau (MAPT) drives neuronal dysfunction in Alzheimer disease (AD) and other tauopathies. To dissect the underlying mechanisms, we combined an engineered ascorbic acid peroxidase (APEX) approach with quantitative affinity purification mass spectrometry (AP-MS) followed by proximity ligation assay (PLA) to characterize Tau interactomes modified by neuronal activity and mutations that cause frontotemporal dementia (FTD) in human induced pluripotent stem cell (iPSC)-derived neurons. We established interactions of Tau with presynaptic vesicle proteins during activity-dependent Tau secretion and mapped the Tau-binding sites to the cytosolic domains of integral synaptic vesicle proteins. We showed that FTD mutations impair bioenergetics and markedly diminished Tau's interaction with mitochondria proteins, which were downregulated in AD brains of multiple cohorts and correlated with disease severity. These multimodal and dynamic Tau interactomes with exquisite spatial resolution shed light on Tau's role in neuronal function and disease and highlight potential therapeutic targets to block Tau-mediated pathogenesis.


Asunto(s)
Mitocondrias/metabolismo , Degeneración Nerviosa/metabolismo , Mapas de Interacción de Proteínas , Sinapsis/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Aminoácidos/metabolismo , Biotinilación , Encéfalo/metabolismo , Encéfalo/patología , Núcleo Celular/metabolismo , Progresión de la Enfermedad , Metabolismo Energético , Demencia Frontotemporal/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Mutantes/metabolismo , Mutación/genética , Degeneración Nerviosa/patología , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos , Proteómica , Índice de Severidad de la Enfermedad , Fracciones Subcelulares/metabolismo , Tauopatías/genética , Proteínas tau/química
2.
EMBO Rep ; 24(1): e54689, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36408842

RESUMEN

Disruption of sphingolipid homeostasis and signaling has been implicated in diabetes, cancer, cardiometabolic, and neurodegenerative disorders. Yet, mechanisms governing cellular sensing and regulation of sphingolipid homeostasis remain largely unknown. In yeast, serine palmitoyltransferase, catalyzing the first and rate-limiting step of sphingolipid de novo biosynthesis, is negatively regulated by Orm1 and 2. Lowering sphingolipids triggers Orms phosphorylation, upregulation of serine palmitoyltransferase activity and sphingolipid de novo biosynthesis. However, mammalian orthologs ORMDLs lack the N-terminus hosting the phosphosites. Thus, which sphingolipid(s) are sensed by the cells, and mechanisms of homeostasis remain largely unknown. Here, we identify sphingosine-1-phosphate (S1P) as key sphingolipid sensed by cells via S1PRs to maintain homeostasis. The increase in S1P-S1PR signaling stabilizes ORMDLs, restraining SPT activity. Mechanistically, the hydroxylation of ORMDLs at Pro137 allows a constitutive degradation of ORMDLs via ubiquitin-proteasome pathway, preserving SPT activity. Disrupting S1PR/ORMDL axis results in ceramide accrual, mitochondrial dysfunction, impaired signal transduction, all underlying endothelial dysfunction, early event in the onset of cardio- and cerebrovascular diseases. Our discovery may provide the molecular basis for therapeutic intervention restoring sphingolipid homeostasis.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Esfingolípidos , Animales , Humanos , Esfingolípidos/metabolismo , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/metabolismo , Proteínas de la Membrana/metabolismo , Homeostasis , Saccharomyces cerevisiae/metabolismo , Mamíferos/metabolismo
3.
Hum Mol Genet ; 31(20): 3458-3477, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35652455

RESUMEN

Metabolic alterations shared between the nervous system and skin fibroblasts have emerged in amyotrophic lateral sclerosis (ALS). Recently, we found that a subgroup of sporadic ALS (sALS) fibroblasts (sALS1) is characterized by metabolic profiles distinct from other sALS cases (sALS2) and controls, suggesting that metabolic therapies could be effective in sALS. The metabolic modulators nicotinamide riboside and pterostilbene (EH301) are under clinical development for the treatment of ALS. Here, we studied the transcriptome and metabolome of sALS cells to understand the molecular bases of sALS metabotypes and the impact of EH301. Metabolomics and transcriptomics were investigated at baseline and after EH301 treatment. Moreover, weighted gene coexpression network analysis (WGCNA) was used to investigate the association of the metabolic and clinical features. We found that the sALS1 transcriptome is distinct from sALS2 and that EH301 modifies gene expression differently in sALS1, sALS2 and the controls. Furthermore, EH301 had strong protective effects against metabolic stress, an effect linked to the antiinflammatory and antioxidant pathways. WGCNA revealed that the ALS functional rating scale and metabotypes are associated with gene modules enriched for the cell cycle, immunity, autophagy and metabolic genes, which are modified by EH301. The meta-analysis of publicly available transcriptomic data from induced motor neurons by Answer ALS confirmed the functional associations of genes correlated with disease traits. A subset of genes differentially expressed in sALS fibroblasts was used in a machine learning model to predict disease progression. In conclusion, multiomic analyses highlighted the differential metabolic and transcriptomic profiles in patient-derived fibroblast sALS, which translate into differential responses to the investigational drug EH301.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/metabolismo , Antioxidantes/metabolismo , Drogas en Investigación/metabolismo , Drogas en Investigación/uso terapéutico , Fibroblastos/metabolismo , Humanos , Transcriptoma/genética
4.
Nature ; 562(7727): 423-428, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305738

RESUMEN

Tumours evade immune control by creating hostile microenvironments that perturb T cell metabolism and effector function1-4. However, it remains unclear how intra-tumoral T cells integrate and interpret metabolic stress signals. Here we report that ovarian cancer-an aggressive malignancy that is refractory to standard treatments and current immunotherapies5-8-induces endoplasmic reticulum stress and activates the IRE1α-XBP1 arm of the unfolded protein response9,10 in T cells to control their mitochondrial respiration and anti-tumour function. In T cells isolated from specimens collected from patients with ovarian cancer, upregulation of XBP1 was associated with decreased infiltration of T cells into tumours and with reduced IFNG mRNA expression. Malignant ascites fluid obtained from patients with ovarian cancer inhibited glucose uptake and caused N-linked protein glycosylation defects in T cells, which triggered IRE1α-XBP1 activation that suppressed mitochondrial activity and IFNγ production. Mechanistically, induction of XBP1 regulated the abundance of glutamine carriers and thus limited the influx of glutamine that is necessary to sustain mitochondrial respiration in T cells under glucose-deprived conditions. Restoring N-linked protein glycosylation, abrogating IRE1α-XBP1 activation or enforcing expression of glutamine transporters enhanced mitochondrial respiration in human T cells exposed to ovarian cancer ascites. XBP1-deficient T cells in the metastatic ovarian cancer milieu exhibited global transcriptional reprogramming and improved effector capacity. Accordingly, mice that bear ovarian cancer and lack XBP1 selectively in T cells demonstrate superior anti-tumour immunity, delayed malignant progression and increased overall survival. Controlling endoplasmic reticulum stress or targeting IRE1α-XBP1 signalling may help to restore the metabolic fitness and anti-tumour capacity of T cells in cancer hosts.


Asunto(s)
Endorribonucleasas/metabolismo , Mitocondrias/metabolismo , Neoplasias Ováricas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología , Proteína 1 de Unión a la X-Box/metabolismo , Sistemas de Transporte de Aminoácidos Básicos , Animales , Ascitis/metabolismo , Respiración de la Célula , Progresión de la Enfermedad , Estrés del Retículo Endoplásmico , Femenino , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Glutamina/metabolismo , Glicosilación , Humanos , Interferón gamma/biosíntesis , Interferón gamma/genética , Ratones , Metástasis de la Neoplasia , Trasplante de Neoplasias , Neoplasias Ováricas/patología , Transducción de Señal , Tasa de Supervivencia , Linfocitos T/metabolismo , Escape del Tumor/inmunología , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box/biosíntesis , Proteína 1 de Unión a la X-Box/deficiencia
5.
J Neurosci ; 40(16): 3142-3151, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32152200

RESUMEN

Prohibitin (PHB) is a critical protein involved in many cellular activities. In brain, PHB resides in mitochondria, where it forms a large protein complex with PHB2 in the inner TFmembrane, which serves as a scaffolding platform for proteins involved in mitochondrial structural and functional integrity. PHB overexpression at moderate levels provides neuroprotection in experimental brain injury models. In addition, PHB expression is involved in ischemic preconditioning, as its expression is enhanced in preconditioning paradigms. However, the mechanisms of PHB functional regulation are still unknown. Observations that nitric oxide (NO) plays a key role in ischemia preconditioning compelled us to postulate that the neuroprotective effect of PHB could be regulated by NO. Here, we test this hypothesis in a neuronal model of ischemia-reperfusion injury and show that NO and PHB are mutually required for neuronal resilience against oxygen and glucose deprivation stress. Further, we demonstrate that NO post-translationally modifies PHB through protein S-nitrosylation and regulates PHB neuroprotective function, in a nitric oxide synthase-dependent manner. These results uncover the mechanisms of a previously unrecognized form of molecular regulation of PHB that underlies its neuroprotective function.SIGNIFICANCE STATEMENT Prohibitin (PHB) is a critical mitochondrial protein that exerts a potent neuroprotective effect when mildly upregulated in mice. However, how the neuroprotective function of PHB is regulated is still unknown. Here, we demonstrate a novel regulatory mechanism for PHB that involves nitric oxide (NO) and shows that PHB and NO interact directly, resulting in protein S-nitrosylation on residue Cys69 of PHB. We further show that nitrosylation of PHB may be essential for its ability to preserve neuronal viability under hypoxic stress. Thus, our study reveals a previously unknown mechanism of functional regulation of PHB that has potential therapeutic implications for neurologic disorders.


Asunto(s)
Neuronas/metabolismo , Neuroprotección/fisiología , Óxido Nítrico/metabolismo , Daño por Reperfusión/metabolismo , Proteínas Represoras/metabolismo , Animales , Muerte Celular/fisiología , Células Cultivadas , GMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Ratones , NG-Nitroarginina Metil Éster/farmacología , Neuronas/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Óxido Nítrico Sintasa/antagonistas & inhibidores , Prohibitinas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
6.
Neurobiol Dis ; 144: 105025, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32745521

RESUMEN

Amyotrophic lateral sclerosis is a disease characterized by progressive paralysis and death. Most ALS-cases are sporadic (sALS) and patient heterogeneity poses challenges for effective therapies. Applying metabolite profiling on 77-sALS patient-derived-fibroblasts and 43-controls, we found ~25% of sALS cases (termed sALS-1) are characterized by transsulfuration pathway upregulation, where methionine-derived-homocysteine is channeled into cysteine for glutathione synthesis. sALS-1 fibroblasts selectively exhibited a growth defect under oxidative conditions, fully-rescued by N-acetylcysteine (NAC). [U13C]-glucose tracing showed transsulfuration pathway activation with accelerated glucose flux into the Krebs cycle. We established a four-metabolite support vector machine model predicting sALS-1 metabotype with 97.5% accuracy. Both sALS-1 metabotype and growth phenotype were validated in an independent cohort of sALS cases. Importantly, plasma metabolite profiling identified a system-wide cysteine metabolism perturbation as a hallmark of sALS-1. Findings reveal that sALS patients can be stratified into distinct metabotypes with differential sensitivity to metabolic stress, providing novel insights for personalized therapy.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Cisteína/metabolismo , Fibroblastos/metabolismo , Glucosa/metabolismo , Glutatión/metabolismo , Metaboloma , Anciano , Estudios de Casos y Controles , Células Cultivadas , Femenino , Humanos , Masculino , Redes y Vías Metabólicas , Metabolómica , Persona de Mediana Edad , Serina/metabolismo , Piel/citología
7.
J Neurochem ; 148(6): 731-745, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30582748

RESUMEN

Reactive oxygen species (ROS) are by-products of physiological mitochondrial metabolism that are involved in several cellular signaling pathways as well as tissue injury and pathophysiological processes, including brain ischemia/reperfusion injury. The mitochondrial respiratory chain is considered a major source of ROS; however, there is little agreement on how ROS release depends on oxygen concentration. The rate of H2 O2 release by intact brain mitochondria was measured with an Amplex UltraRed assay using a high-resolution respirometer (Oroboros) equipped with a fluorescent optical module and a system of controlled gas flow for varying the oxygen concentration. Three types of substrates were used: malate and pyruvate, succinate and glutamate, succinate alone or glycerol 3-phosphate. For the first time we determined that, with any substrate used in the absence of inhibitors, H2 O2 release by respiring brain mitochondria is linearly dependent on the oxygen concentration. We found that the highest rate of H2 O2 release occurs in conditions of reverse electron transfer when mitochondria oxidize succinate or glycerol 3-phosphate. H2 O2 production by complex III is significant only in the presence of antimycin A and, in this case, the oxygen dependence manifested mixed (linear and hyperbolic) kinetics. We also demonstrated that complex II in brain mitochondria could contribute to ROS generation even in the absence of its substrate succinate when the quinone pool is reduced by glycerol 3-phosphate. Our results underscore the critical importance of reverse electron transfer in the brain, where a significant amount of succinate can be accumulated during ischemia providing a backflow of electrons to complex I at the early stages of reperfusion. Our study also demonstrates that ROS generation in brain mitochondria is lower under hypoxic conditions than in normoxia. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Asunto(s)
Encéfalo/metabolismo , Mitocondrias/metabolismo , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antimicina A/farmacología , Encéfalo/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , Respiración de la Célula/efectos de los fármacos , Respiración de la Célula/fisiología , Flavoproteínas Transportadoras de Electrones/efectos de los fármacos , Flavoproteínas Transportadoras de Electrones/metabolismo , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Ratones , Mitocondrias/efectos de los fármacos , Consumo de Oxígeno/fisiología
8.
J Cell Sci ; 130(21): 3713-3727, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28864766

RESUMEN

cAMP regulates a wide variety of physiological functions in mammals. This single second messenger can regulate multiple, seemingly disparate functions within independently regulated cell compartments. We have previously identified one such compartment inside the matrix of the mitochondria, where soluble adenylyl cyclase (sAC) regulates oxidative phosphorylation (OXPHOS). We now show that sAC knockout fibroblasts have a defect in OXPHOS activity and attempt to compensate for this defect by increasing OXPHOS proteins. Importantly, sAC knockout cells also exhibit decreased probability of endoplasmic reticulum (ER) Ca2+ release associated with diminished phosphorylation of the inositol 3-phosphate receptor. Restoring sAC expression exclusively in the mitochondrial matrix rescues OXPHOS activity and reduces mitochondrial biogenesis, indicating that these phenotypes are regulated by intramitochondrial sAC. In contrast, Ca2+ release from the ER is only rescued when sAC expression is restored throughout the cell. Thus, we show that functionally distinct, sAC-defined, intracellular cAMP signaling domains regulate metabolism and Ca2+ signaling.


Asunto(s)
Adenilil Ciclasas/metabolismo , Señalización del Calcio , Calcio/metabolismo , AMP Cíclico/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Adenilil Ciclasas/genética , Animales , Fraccionamiento Celular , Línea Celular , Retículo Endoplásmico/ultraestructura , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones , Mitocondrias/ultraestructura , Fosforilación Oxidativa , Consumo de Oxígeno
9.
Stroke ; 49(5): 1223-1231, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29643256

RESUMEN

BACKGROUND AND PURPOSE: Ischemic brain injury is characterized by 2 temporally distinct but interrelated phases: ischemia (primary energy failure) and reperfusion (secondary energy failure). Loss of cerebral blood flow leads to decreased oxygen levels and energy crisis in the ischemic area, initiating a sequence of pathophysiological events that after reoxygenation lead to ischemia/reperfusion (I/R) brain damage. Mitochondrial impairment and oxidative stress are known to be early events in I/R injury. However, the biochemical mechanisms of mitochondria damage in I/R are not completely understood. METHODS: We used a mouse model of transient focal cerebral ischemia to investigate acute I/R-induced changes of mitochondrial function, focusing on mechanisms of primary and secondary energy failure. RESULTS: Ischemia induced a reversible loss of flavin mononucleotide from mitochondrial complex I leading to a transient decrease in its enzymatic activity, which is rapidly reversed on reoxygenation. Reestablishing blood flow led to a reversible oxidative modification of mitochondrial complex I thiol residues and inhibition of the enzyme. Administration of glutathione-ethyl ester at the onset of reperfusion prevented the decline of complex I activity and was associated with smaller infarct size and improved neurological outcome, suggesting that decreased oxidation of complex I thiols during I/R-induced oxidative stress may contribute to the neuroprotective effect of glutathione ester. CONCLUSIONS: Our results unveil a key role of mitochondrial complex I in the development of I/R brain injury and provide the mechanistic basis for the well-established mitochondrial dysfunction caused by I/R. Targeting the functional integrity of complex I in the early phase of reperfusion may provide a novel therapeutic strategy to prevent tissue injury after stroke.


Asunto(s)
Encéfalo/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Mononucleótido de Flavina/metabolismo , Glutatión/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Mitocondrias/metabolismo , Daño por Reperfusión/metabolismo , Animales , Encéfalo/efectos de los fármacos , Isquemia Encefálica/metabolismo , Circulación Cerebrovascular , Citrato (si)-Sintasa/efectos de los fármacos , Citrato (si)-Sintasa/metabolismo , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/efectos de los fármacos , Metabolismo Energético , Glutatión/análogos & derivados , Glutatión/farmacología , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Distribución Aleatoria , Compuestos de Sulfhidrilo/metabolismo
10.
J Bioenerg Biomembr ; 49(1): 3-11, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26971498

RESUMEN

We demonstrate a suppression of ROS production and uncoupling of mitochondria by exogenous citrate in Mg2+ free medium. Exogenous citrate suppressed H2O2 emission and depolarized mitochondria. The depolarization was paralleled by the stimulation of respiration of mitochondria. The uncoupling action of citrate was independent of the presence of sodium, potassium, or chlorine ions, and it was not mediated by the changes in permeability of the inner mitochondrial membrane to solutes. The citrate transporter was not involved in the citrate effect. Inhibitory analysis data indicated that several well described mitochondria carriers and channels (ATPase, IMAC, ADP/ATP translocase, mPTP, mKATP) were not involved in citrate's effect. Exogenous MgCl2 strongly inhibited citrate-induced depolarization. The uncoupling effect of citrate was demonstrated in rat brain, mouse brain, mouse liver, and human melanoma cells mitochondria. We interpreted the data as an evidence to the existence of a hitherto undescribed putative inner mitochondrial membrane channel that is regulated by extramitochondrial Mg2+ or other divalent cations.


Asunto(s)
Cationes Bivalentes/farmacología , Ácido Cítrico/farmacología , Ácido Edético/farmacología , Cloruro de Magnesio/farmacología , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Transporte Biológico , Encéfalo/ultraestructura , Humanos , Peróxido de Hidrógeno/metabolismo , Canales Iónicos/metabolismo , Melanoma/patología , Melanoma/ultraestructura , Ratones , Ratas , Especies Reactivas de Oxígeno/metabolismo
11.
Biochim Biophys Acta ; 1842(12 Pt B): 2555-60, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24907564

RESUMEN

The soluble adenylyl cyclase (sAC) catalyzes the conversion of ATP into cyclic AMP (cAMP). Recent studies have shed new light on the role of sAC localized in mitochondria and its product cAMP, which drives mitochondrial protein phosphorylation and regulation of the oxidative phosphorylation system and other metabolic enzymes, presumably through the activation of intra-mitochondrial PKA. In this review article, we summarize recent findings on mitochondrial sAC activation by bicarbonate (HCO(3)(-)) and calcium (Ca²âº) and the effects on mitochondrial metabolism. We also discuss putative mechanisms whereby sAC-mediated mitochondrial protein phosphorylation regulates mitochondrial metabolism. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.


Asunto(s)
Adenilil Ciclasas/metabolismo , Mitocondrias/enzimología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática , Humanos , Fosforilación Oxidativa
12.
FASEB J ; 28(4): 1682-97, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24391134

RESUMEN

Substrate-level phosphorylation mediated by succinyl-CoA ligase in the mitochondrial matrix produces high-energy phosphates in the absence of oxidative phosphorylation. Furthermore, when the electron transport chain is dysfunctional, provision of succinyl-CoA by the α-ketoglutarate dehydrogenase complex (KGDHC) is crucial for maintaining the function of succinyl-CoA ligase yielding ATP, preventing the adenine nucleotide translocase from reversing. We addressed the source of the NAD(+) supply for KGDHC under anoxic conditions and inhibition of complex I. Using pharmacologic tools and specific substrates and by examining tissues from pigeon liver exhibiting no diaphorase activity, we showed that mitochondrial diaphorases in the mouse liver contribute up to 81% to the NAD(+) pool during respiratory inhibition. Under these conditions, KGDHC's function, essential for the provision of succinyl-CoA to succinyl-CoA ligase, is supported by NAD(+) derived from diaphorases. Through this process, diaphorases contribute to the maintenance of substrate-level phosphorylation during respiratory inhibition, which is manifested in the forward operation of adenine nucleotide translocase. Finally, we show that reoxidation of the reducible substrates for the diaphorases is mediated by complex III of the respiratory chain.


Asunto(s)
Adenosina Trifosfato/metabolismo , Ciclo del Ácido Cítrico , Dihidrolipoamida Deshidrogenasa/metabolismo , Mitocondrias Hepáticas/metabolismo , NAD/metabolismo , Acilcoenzima A/metabolismo , Animales , Columbidae , Dihidrolipoamida Deshidrogenasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Hipoxia/metabolismo , Complejo Cetoglutarato Deshidrogenasa/antagonistas & inhibidores , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Hepáticas/fisiología , Translocasas Mitocondriales de ADP y ATP/metabolismo , Modelos Biológicos , Nitrilos/farmacología , Oxidación-Reducción , Fosforilación Oxidativa , Especificidad por Sustrato , Succinato-CoA Ligasas/metabolismo , Desacopladores/farmacología
13.
FASEB J ; 27(6): 2392-406, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23475850

RESUMEN

A decline in α-ketoglutarate dehydrogenase complex (KGDHC) activity has been associated with neurodegeneration. Provision of succinyl-CoA by KGDHC is essential for generation of matrix ATP (or GTP) by substrate-level phosphorylation catalyzed by succinyl-CoA ligase. Here, we demonstrate ATP consumption in respiration-impaired isolated and in situ neuronal somal mitochondria from transgenic mice with a deficiency of either dihydrolipoyl succinyltransferase (DLST) or dihydrolipoyl dehydrogenase (DLD) that exhibit a 20-48% decrease in KGDHC activity. Import of ATP into the mitochondrial matrix of transgenic mice was attributed to a shift in the reversal potential of the adenine nucleotide translocase toward more negative values due to diminished matrix substrate-level phosphorylation, which causes the translocase to reverse prematurely. Immunoreactivity of all three subunits of succinyl-CoA ligase and maximal enzymatic activity were unaffected in transgenic mice as compared to wild-type littermates. Therefore, decreased matrix substrate-level phosphorylation was due to diminished provision of succinyl-CoA. These results were corroborated further by the finding that mitochondria from wild-type mice respiring on substrates supporting substrate-level phosphorylation exhibited ~30% higher ADP-ATP exchange rates compared to those obtained from DLST(+/-) or DLD(+/-) littermates. We propose that KGDHC-associated pathologies are a consequence of the inability of respiration-impaired mitochondria to rely on "in-house" mitochondrial ATP reserves.


Asunto(s)
Aciltransferasas/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Dihidrolipoamida Deshidrogenasa/deficiencia , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/genética , Animales , Dihidrolipoamida Deshidrogenasa/genética , Dihidrolipoamida Deshidrogenasa/metabolismo , Femenino , Complejo Cetoglutarato Deshidrogenasa/química , Complejo Cetoglutarato Deshidrogenasa/deficiencia , Complejo Cetoglutarato Deshidrogenasa/genética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación , Especificidad por Sustrato
14.
Biochim Biophys Acta Bioenerg ; : 149494, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960079

RESUMEN

Mitochondrial bioenergetics in females and males is different. Whether mitochondria from male and female brains display differences in mitochondrial enzymes is unknown. We measured the function of mitochondrial complexes from the brains of male and female macaques (Macaca mulatta). Cerebral tissue of macaques males exhibit elevated content and activity of mitochondrial complex I (NADH:ubiquinone oxidoreductase) and activity of complex II compared to females. No significant differences between sexes were found in the content of α-ketoglutarate dehydrogenase and activities of cytochrome c oxidase and F1Fo ATPase. Our results, underscore the need for further investigations to elucidate sex-related mitochondrial distinctions in humans.

15.
Neurobiol Aging ; 130: 80-83, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37473581

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neuromuscular disease with limited therapeutic options. Biomarkers are needed for early disease detection, clinical trial design, and personalized medicine. Early evidence suggests that specific morphometric features in ALS primary skin fibroblasts may be used as biomarkers; however, this hypothesis has not been rigorously tested in conclusively large fibroblast populations. Here, we imaged ALS-relevant organelles (mitochondria, endoplasmic reticulum, lysosomes) and proteins (TAR DNA-binding protein 43, Ras GTPase-activating protein-binding protein 1, heat-shock protein 60) at baseline and under stress perturbations and tested their predictive power on a total set of 443 human fibroblast lines from ALS and healthy individuals. Machine learning approaches were able to confidently predict stress perturbation states (ROC-AUC ∼0.99) but not disease groups or clinical features (ROC-AUC 0.58-0.64). Our findings indicate that multivariate models using patient-derived fibroblast morphometry can accurately predict different stressors but are insufficient to develop viable ALS biomarkers.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/metabolismo , Biomarcadores , Retículo Endoplásmico/metabolismo , Aprendizaje Automático , Fibroblastos/metabolismo
16.
J Biol Chem ; 286(8): 6345-53, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21173147

RESUMEN

Cyclophilin D (cypD)-deficient mice exhibit resistance to focal cerebral ischemia and to necrotic but not apoptotic stimuli. To address this disparity, we investigated isolated brain and in situ neuronal and astrocytic mitochondria from cypD-deficient and wild-type mice. Isolated mitochondria were challenged by high Ca(2+), and the effects of substrates and respiratory chain inhibitors were evaluated on permeability transition pore opening by light scatter. In situ neuronal and astrocytic mitochondria were visualized by mito-DsRed2 targeting and challenged by calcimycin, and the effects of glucose, NaCN, and an uncoupler were evaluated by measuring mitochondrial volume. In isolated mitochondria, Ca(2+) caused a large cypD-dependent change in light scatter in the absence of substrates that was insensitive to Ruthenium red or Ru360. Uniporter inhibitors only partially affected the entry of free Ca(2+) in the matrix. Inhibition of complex III/IV negated the effect of substrates, but inhibition of complex I was protective. Mitochondria within neurons and astrocytes exhibited cypD-independent swelling that was dramatically hastened when NaCN and 2-deoxyglucose were present in a glucose-free medium during calcimycin treatment. In the presence of an uncoupler, cypD-deficient astrocytic mitochondria performed better than wild-type mitochondria, whereas the opposite was observed in neurons. Neuronal mitochondria were examined further during glutamate-induced delayed Ca(2+) deregulation. CypD-knock-out mitochondria exhibited an absence or a delay in the onset of mitochondrial swelling after glutamate application. Apparently, some conditions involving deenergization render cypD an important modulator of PTP in the brain. These findings could explain why absence of cypD protects against necrotic (deenergized mitochondria), but not apoptotic (energized mitochondria) stimuli.


Asunto(s)
Encéfalo/enzimología , Calcio/metabolismo , Ciclofilinas/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Astrocitos/citología , Astrocitos/enzimología , Encéfalo/citología , Células Cultivadas , Peptidil-Prolil Isomerasa F , Ciclofilinas/genética , Transporte de Electrón/fisiología , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/enzimología
17.
FASEB J ; 24(7): 2405-16, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20207940

RESUMEN

In pathological conditions, F(0)F(1)-ATPase hydrolyzes ATP in an attempt to maintain mitochondrial membrane potential. Using thermodynamic assumptions and computer modeling, we established that mitochondrial membrane potential can be more negative than the reversal potential of the adenine nucleotide translocase (ANT) but more positive than that of the F(0)F(1)-ATPase. Experiments on isolated mitochondria demonstrated that, when the electron transport chain is compromised, the F(0)F(1)-ATPase reverses, and the membrane potential is maintained as long as matrix substrate-level phosphorylation is functional, without a concomitant reversal of the ANT. Consistently, no cytosolic ATP consumption was observed using plasmalemmal K(ATP) channels as cytosolic ATP biosensors in cultured neurons, in which their in situ mitochondria were compromised by respiratory chain inhibitors. This finding was further corroborated by quantitative measurements of mitochondrial membrane potential, oxygen consumption, and extracellular acidification rates, indicating nonreversal of ANT of compromised in situ neuronal and astrocytic mitochondria; and by bioluminescence ATP measurements in COS-7 cells transfected with cytosolic- or nuclear-targeted luciferases and treated with mitochondrial respiratory chain inhibitors in the presence of glycolytic plus mitochondrial vs. only mitochondrial substrates. Our findings imply the possibility of a rescue mechanism that is protecting against cytosolic/nuclear ATP depletion under pathological conditions involving impaired respiration. This mechanism comes into play when mitochondria respire on substrates that support matrix substrate-level phosphorylation.


Asunto(s)
Potencial de la Membrana Mitocondrial , Translocasas Mitocondriales de ADP y ATP/metabolismo , ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células COS , Chlorocebus aethiops , Mitocondrias/metabolismo , Neuronas , Fosforilación , Conejos , Ratas , Ratas Sprague-Dawley , Termodinámica
18.
Autophagy ; 17(12): 4029-4042, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33749521

RESUMEN

ALS (amyotrophic lateral sclerosis), the most common motor neuron disease, causes muscle denervation and rapidly fatal paralysis. While motor neurons are the most affected cells in ALS, studies on the pathophysiology of the disease have highlighted the importance of non-cell autonomous mechanisms, which implicate astrocytes and other glial cells. In ALS, subsets of reactive astrocytes lose their physiological functions and become toxic for motor neurons, thereby contributing to disease pathogenesis. Evidence of astrocyte contribution to disease pathogenesis are well established in cellular and animal models of familial ALS linked to mutant SOD1, where astrocytes promote motor neuron cell death. The mechanism underlying astrocytes reactivity in conditions of CNS injury have been shown to involve the MTOR pathway. However, the role of this conserved metabolic signaling pathway, and the potential therapeutic effects of its modulation, have not been investigated in ALS astrocytes. Here, we show elevated activation of the MTOR pathway in human-derived astrocytes harboring mutant SOD1, which results in inhibition of macroautophagy/autophagy, increased cell proliferation, and enhanced astrocyte reactivity. We demonstrate that MTOR pathway activation in mutant SOD1 astrocytes is due to post-transcriptional upregulation of the IGF1R (insulin like growth factor 1 receptor), an upstream positive modulator of the MTOR pathway. Importantly, inhibition of the IGF1R-MTOR pathway decreases cell proliferation and reactivity of mutant SOD1 astrocytes, and attenuates their toxicity to motor neurons. These results suggest that modulation of astrocytic IGF1R-MTOR pathway could be a viable therapeutic strategy in SOD1 ALS and potentially other neurological diseases.Abbreviations: ACM: astrocyte conditioned medium; AKT: AKT serine/threonine kinase; ALS: amyotrophic lateral sclerosis; BrdU: thymidine analog 5-bromo-2'-deoxyuridine; CNS: central nervous system; EIF4EBP1/4EBP1: eukaryotic translation initiation factor 4E binding protein 1; GFAP: glial fibrillary acidic protein; IGF1R: insulin like growth factor 1 receptor; INSR: insulin receptor; iPSA: iPSC-derived astrocytes; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta;MTOR: mechanistic target of rapamycin kinase; NES: nestin; PPK1: 3-phosphoinositide dependent protein kinase 1; PI: propidium iodide; PPP: picropodophyllotoxin; PTEN: phosphatase and tensin homolog; S100B/S100ß: S100 calcium binding protein B; SLC1A3/ EAAT1: solute carrier family 1 member 3; SMI-32: antibody to nonphosphorylated NEFH; SOD1: superoxide dismutase 1; TUBB3: tubulin beta 3 class III; ULK1: unc-51 like autophagy activating kinase 1.


Asunto(s)
Esclerosis Amiotrófica Lateral , Astrocitos , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Astrocitos/metabolismo , Autofagia , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/farmacología , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Serina-Treonina Quinasas TOR/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-33602014

RESUMEN

Primary lateral sclerosis (PLS) is a rare neurodegenerative disease characterized by progressive degeneration of upper motor neurons (UMNs). Recent studies shed new light onto the cellular events that are particularly important for UMN maintenance including intracellular trafficking, mitochondrial energy homeostasis and lipid metabolism. This review summarizes these advances including the role of Alsin as a gene linked to atypical forms of juvenile PLS, and discusses wider aspects of cellular pathology that have been observed in adult forms of PLS. The review further discusses the prospects of new transgenic upper motor neuron reporter mice, human stem cell-derived UMN cultures, cerebral organoids and non-human primates as future model systems to better understand and ultimately treat PLS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedad de la Neurona Motora , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/genética , Animales , Factores de Intercambio de Guanina Nucleótido , Ratones , Enfermedad de la Neurona Motora/genética , Neuronas Motoras
20.
Life Sci Alliance ; 2(5)2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31658977

RESUMEN

We report a signaling pathway linking two fundamental functions of the ER, oxidative protein folding, and intracellular calcium regulation. Cells sense ER oxidative protein folding through H2O2, which induces Nrf2 nuclear translocation. Nrf2 regulates the expression of GPx8, an ER glutathione peroxidase that modulates ER calcium levels. Because ER protein folding is dependent on calcium, this pathway functions as rheostat of ER calcium levels. Protein misfolding and calcium dysregulation contribute to the pathophysiology of many diseases, including amyotrophic lateral sclerosis, in which astrocytic calcium dysregulation participates in causing motor neuron death. In human-derived astrocytes harboring mutant SOD1 causative of familial amyotrophic lateral sclerosis, we show that impaired ER redox signaling decreases Nrf2 nuclear translocation, resulting in ER calcium overload and increased calcium-dependent cell secretion, leading to motor neuron death. Nrf2 activation in SOD1 mutant astrocytes with dimethyl fumarate restores calcium homeostasis and ameliorates motor neuron death. These results highlight a regulatory mechanism of intracellular calcium homeostasis by ER redox signaling and suggest that this mechanism could be a therapeutic target in SOD1 mutant astrocytes.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Peróxido de Hidrógeno/farmacología , Neuronas Motoras/citología , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Estrés del Retículo Endoplásmico , Células HeLa , Homeostasis , Humanos , Ratones , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Peroxidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA