Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33188004

RESUMEN

Several vector-borne plant pathogens have evolved mechanisms to exploit and to hijack vector host cellular, molecular, and defense mechanisms for their transmission. In the past few years, Liberibacter species, which are transmitted by several psyllid vectors, have become an economically important group of pathogens that have devastated the citrus industry and caused tremendous losses to many other important crops worldwide. The molecular mechanisms underlying the interactions of Liberibacter species with their psyllid vectors are poorly studied. "Candidatus Liberibacter solanacearum," which is associated with important vegetable diseases, is transmitted by the carrot psyllid Bactericera trigonica in a persistent manner. Here, we elucidated the role of the B. trigonica Arp2/3 protein complex, which plays a major role in regulation of the actin cytoskeleton, in the transmission of "Ca Liberibacter solanacearum." "Ca Liberibacter solanacearum" colocalized with ArpC2, a key protein in this complex, and this colocalization was strongly associated with actin filaments. Silencing of the psyllid ArpC2 disrupted the colocalization and the dynamics of F-actin. Silencing of RhoGAP21 and Cdc42, which act in the signaling cascade leading to upregulation of Arp2/3 and F-actin bundling, showed similar results. On the other hand, silencing of ArpC5, another component of the complex, did not induce any significant effects on F-actin formation. Finally, ArpC2 silencing caused a 73.4% reduction in "Ca Liberibacter solanacearum" transmission by psyllids, strongly suggesting that transmission of "Ca Liberibacter solanacearum" by B. trigonica is cytoskeleton dependent and "Ca Liberibacter solanacearum" interacts with ArpC2 to exploit the intracellular actin nucleation process for transmission. Targeting this unique interaction could lead to the development of a novel strategy for the management of Liberibacter-associated diseases.IMPORTANCE Plant diseases caused by vector-borne pathogens are responsible for tremendous losses and threaten some of the most important agricultural crops. A good example is the citrus greening disease, which is caused by bacteria of the genus Liberibacter and is transmitted by psyllids; it has devastated the citrus industry in the United States, China, and Brazil. Here, we show that psyllid-transmitted "Candidatus Liberibacter solanacearum" employs the actin cytoskeleton of psyllid gut cells, specifically the ArpC2 protein in the Arp2/3 complex of this system, for movement and transmission in the vector. Silencing of ArpC2 dramatically influenced the interaction of "Ca Liberibacter solanacearum" with the cytoskeleton and decreased the bacterial transmission to plants. This system could be targeted to develop a novel approach for the control of Liberibacter-associated diseases.


Asunto(s)
Citoesqueleto de Actina , Daucus carota/microbiología , Hemípteros/microbiología , Insectos Vectores/microbiología , Liberibacter , Enfermedades de las Plantas/microbiología , Animales , Proteínas de Insectos/genética
2.
J Virol ; 93(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31092571

RESUMEN

Many animal and plant viruses depend on arthropods for their transmission. Virus-vector interactions are highly specific, and only one vector or one of a group of vectors from the same family is able to transmit a given virus. Poleroviruses (Luteoviridae) are phloem-restricted RNA plant viruses that are exclusively transmitted by aphids. Multiple aphid-transmitted polerovirus species commonly infect pepper, causing vein yellowing, leaf rolling, and fruit discoloration. Despite low aphid populations, a recent outbreak with such severe symptoms in many bell pepper farms in Israel led to reinvestigation of the disease and its insect vector. Here we report that this outbreak was caused by a new whitefly (Bemisia tabaci)-transmitted polerovirus, which we named Pepper whitefly-borne vein yellows virus (PeWBVYV). PeWBVYV is highly (>95%) homologous to Pepper vein yellows virus (PeVYV) from Israel and Greece on its 5' end half, while it is homologous to African eggplant yellows virus (AeYV) on its 3' half. Koch's postulates were proven by constructing a PeWBVYV infectious clone causing the pepper disease, which was in turn transmitted to test pepper plants by B. tabaci but not by aphids. PeWBVYV represents the first report of a whitefly-transmitted polerovirus.IMPORTANCE The high specificity of virus-vector interactions limits the possibility of a given virus changing vectors. Our report describes a new virus from a family of viruses strictly transmitted by aphids which is now transmitted by whiteflies (Bemisia tabaci) and not by aphids. This report presents the first description of polerovirus transmission by whiteflies. Whiteflies are highly resistant to insecticides and disperse over long distances, carrying virus inoculum. Thus, the report of such unusual polerovirus transmission by a supervector has extensive implications for the epidemiology of the virus disease, with ramifications concerning the international trade of agricultural commodities.


Asunto(s)
Capsicum/parasitología , Capsicum/virología , Hemípteros/virología , Insectos Vectores/virología , Luteoviridae/aislamiento & purificación , Enfermedades de las Plantas/virología , Animales , Israel , Luteoviridae/clasificación , Luteoviridae/genética , Filogenia , Homología de Secuencia
3.
J Gen Virol ; 100(4): 721-731, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30762513

RESUMEN

We have recently shown that Rickettsia, a secondary facultative bacterial symbiont that infects the whitefly B. tabaci is implicated in the transmission of Tomato yellow leaf curl virus (TYLCV). Infection with Rickettsia improved the acquisition and transmission of the virus by B. tabaci adults. Here we performed a transcriptomic analysis with Rickettsia-infected and uninfected B. tabaci adults before and after TYLCV acquisition. The results show a dramatic and specific activation of the immune system in the presence of Rickettsia before TYLCV acquisition. However, when TYLCV was acquired, it induced massive activation of gene expression in the Rickettsia uninfected population, whereas in the Rickettsia-infected population the virus induced massive down-regulation of gene expression. Fitness and choice experiments revealed that while Rickettsia-infected whiteflies are always more attracted to TYLCV-infected plants, this attraction is not always beneficiary for their offspring. These studies further confirm the role of Rickettsia in many aspects of B. tabaci interactions with TYLCV, and possibly serves as an important factor in the dissemination of the virus.


Asunto(s)
Begomovirus/patogenicidad , Fertilidad/fisiología , Hemípteros/microbiología , Hemípteros/virología , Rickettsia/patogenicidad , Animales , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Insectos Vectores/microbiología , Insectos Vectores/virología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Infecciones por Rickettsia/microbiología , Virosis/virología
4.
BMC Biol ; 14(1): 110, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27974049

RESUMEN

BACKGROUND: The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is among the 100 worst invasive species in the world. As one of the most important crop pests and virus vectors, B. tabaci causes substantial crop losses and poses a serious threat to global food security. RESULTS: We report the 615-Mb high-quality genome sequence of B. tabaci Middle East-Asia Minor 1 (MEAM1), the first genome sequence in the Aleyrodidae family, which contains 15,664 protein-coding genes. The B. tabaci genome is highly divergent from other sequenced hemipteran genomes, sharing no detectable synteny. A number of known detoxification gene families, including cytochrome P450s and UDP-glucuronosyltransferases, are significantly expanded in B. tabaci. Other expanded gene families, including cathepsins, large clusters of tandemly duplicated B. tabaci-specific genes, and phosphatidylethanolamine-binding proteins (PEBPs), were found to be associated with virus acquisition and transmission and/or insecticide resistance, likely contributing to the global invasiveness and efficient virus transmission capacity of B. tabaci. The presence of 142 horizontally transferred genes from bacteria or fungi in the B. tabaci genome, including genes encoding hopanoid/sterol synthesis and xenobiotic detoxification enzymes that are not present in other insects, offers novel insights into the unique biological adaptations of this insect such as polyphagy and insecticide resistance. Interestingly, two adjacent bacterial pantothenate biosynthesis genes, panB and panC, have been co-transferred into B. tabaci and fused into a single gene that has acquired introns during its evolution. CONCLUSIONS: The B. tabaci genome contains numerous genetic novelties, including expansions in gene families associated with insecticide resistance, detoxification and virus transmission, as well as numerous horizontally transferred genes from bacteria and fungi. We believe these novelties likely have shaped B. tabaci as a highly invasive polyphagous crop pest and efficient vector of plant viruses. The genome serves as a reference for resolving the B. tabaci cryptic species complex, understanding fundamental biological novelties, and providing valuable genetic information to assist the development of novel strategies for controlling whiteflies and the viruses they transmit.


Asunto(s)
Genoma de los Insectos/genética , Hemípteros/genética , Animales , Hemípteros/efectos de los fármacos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Resistencia a los Insecticidas/genética , Resistencia a los Insecticidas/fisiología , Virus de Plantas/patogenicidad
5.
J Virol ; 89(19): 9791-803, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26178995

RESUMEN

UNLABELLED: Tomato yellow leaf curl virus (TYLCV) is a begomovirus transmitted exclusively by the whitefly Bemisia tabaci in a persistent, circulative manner. Replication of TYLCV in its vector remains controversial, and thus far, the virus has been considered to be nonpropagative. Following 8 h of acquisition on TYLCV-infected tomato plants or purified virions and then transfer to non-TYLCV-host cotton plants, the amounts of virus inside whitefly adults significantly increased (>2-fold) during the first few days and then continuously decreased, as measured by the amounts of genes on both virus DNA strands. Reported alterations in insect immune and defense responses upon virus retention led us to hypothesize a role for the immune response in suppressing virus replication. After virus acquisition, stress conditions were imposed on whiteflies, and the levels of three viral gene sequences were measured over time. When whiteflies were exposed to TYLCV and treatment with two different pesticides, the virus levels continuously increased. Upon exposure to heat stress, the virus levels gradually decreased, without any initial accumulation. Switching of whiteflies between pesticide, heat stress, and control treatments caused fluctuating increases and decreases in virus levels. Fluorescence in situ hybridization analysis confirmed these results and showed virus signals inside midgut epithelial cell nuclei. Combining the pesticide and heat treatments with virus acquisition had significant effects on fecundity. Altogether, our results demonstrate for the first time that a single-stranded DNA plant virus can replicate in its hemipteran vector. IMPORTANCE: Plant viruses in agricultural crops are of great concern worldwide. Many of them are transmitted from infected to healthy plants by insects. Persistently transmitted viruses often have a complex association with their vectors; however, most are believed not to replicate within these vectors. Such replication is important, as it contributes to the virus's spread and can impact vector biology. Tomato yellow leaf curl virus (TYLCV) is a devastating begomovirus that infects tomatoes. It is persistently transmitted by the whitefly Bemisia tabaci but is believed not to replicate in the insect. To demonstrate that TYLCV is, in fact, propagative (i.e., it replicates in its insect host), we hypothesized that insect defenses play a role in suppressing virus replication. We thus exposed whitefly to pesticide and heat stress conditions to manipulate its physiology, and we showed that under such conditions, the virus is able to replicate and significantly influence the insect's fecundity.


Asunto(s)
Begomovirus/fisiología , Regulación Viral de la Expresión Génica/inmunología , Hemípteros/virología , Insectos Vectores/virología , Replicación Viral/fisiología , Animales , Begomovirus/efectos de los fármacos , Cartilla de ADN/genética , ADN Viral/análisis , Fertilidad/efectos de los fármacos , Hemípteros/efectos de los fármacos , Hemípteros/inmunología , Calor , Hibridación Fluorescente in Situ , Insectos Vectores/efectos de los fármacos , Insectos Vectores/inmunología , Plaguicidas/toxicidad
6.
Insects ; 14(12)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38132629

RESUMEN

'Candidatus Liberibacter solanacearum' (Lso) is a plant pathogenic bacterium transmitted by psyllids that causes significant agricultural damage. Several Lso haplotypes have been reported. Among them, LsoA and LsoB are transmitted by the potato psyllid Bactericera cockerelli and infect solanaceous crops, and LsoD is transmitted by the carrot psyllid B. trigonica and infects apiaceous crops. Several studies evaluated the transmission of these haplotypes by adult psyllids. However, fewer data are available on the transmission of different Lso haplotypes by psyllid nymphs. In this study, we investigated the transmission of these three haplotypes by psyllid nymphs to expand our basic understanding of Lso transmission. Specifically, the objective was to determine if the haplotypes differed in their transmission rates by nymphs and if LsoA and LsoB accumulated at different rates in the guts of nymphs as it occurs in adults. First, we quantified LsoA and LsoB titers in the guts of third- and fifth-instar potato psyllid nymphs. We found similar LsoA titers in the two nymphal stages, while LsoB titer was lower in the gut of the third-instar nymphs compared to fifth-instar nymphs. Second, we assessed the transmission efficiency of LsoA and LsoB by third-instar nymphs to tomato plants, revealing that LsoA was transmitted earlier and with higher efficiency than LsoB. Finally, we examined the transmission of LsoD by carrot psyllid nymphs to celery plants and demonstrated an age-related difference in the transmission rate. These findings provide valuable insights into the transmission dynamics of different Lso haplotypes by nymphal vectors, shedding light on their epidemiology and interactions with their psyllid vectors.

7.
Insects ; 13(9)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36135541

RESUMEN

The whitefly Bemisia tabaci is one of the most important agricultural pests due to its extreme invasiveness, insecticide resistance, and ability to transmit hundreds of plant viruses. Among these, Begomoviruses and recombinant whitefly-borne Poleroviruses are transmitted persistently. Several studies have shown that upon infection, plant viruses manipulate plant-emitted volatile organic compounds (VOCs), which have important roles in communication with insects. In this study, we profiled and compared the VOCs emitted by tomato and pepper plant leaves after infection with the Tomato yellow leaf curl virus (TYLCV) (Bogomoviruses) and the newly discovered Pepper whitefly-borne vein yellows virus (PeWBVYV) (Poleroviruses), respectively. The results identified shared emitted VOCs but also uncovered unique VOC signatures for each virus and for whitefly infestation (i.e., without virus infection) independently. The results suggest that plants have general defense responses; however, they are also able to respond individually to infection with specific viruses or infestation with an insect pest. The results are important to enhance our understanding of virus- and insect vector-induced alteration in the emission of plant VOCs. These volatiles can eventually be used for the management of virus diseases/insect vectors by either monitoring or disrupting insect-plant interactions.

8.
J Virol ; 84(18): 9310-7, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20631135

RESUMEN

Tomato yellow leaf curl virus (TYLCV) (Geminiviridae: Begomovirus) is exclusively vectored by the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). TYLCV transmission depends upon a 63-kDa GroEL protein produced by the vector's endosymbiotic bacteria. B. tabaci is a species complex comprising several genetically distinct biotypes that show different secondary-symbiont fauna. In Israel, the B biotype harbors Hamiltonella, and the Q biotype harbors Wolbachia and Arsenophonus. Both biotypes harbor Rickettsia and Portiera (the obligatory primary symbionts). The aim of this study was to determine which B. tabaci symbionts are involved in TYLCV transmission using B. tabaci populations collected in Israel. Virus transmission assays by B. tabaci showed that the B biotype efficiently transmits the virus, while the Q biotype scarcely transmits it. Yeast two-hybrid and protein pulldown assays showed that while the GroEL protein produced by Hamiltonella interacts with TYLCV coat protein, GroEL produced by Rickettsia and Portiera does not. To assess the role of Wolbachia and Arsenophonus GroEL proteins (GroELs), we used an immune capture PCR (IC-PCR) assay, employing in vivo- and in vitro-synthesized GroEL proteins from all symbionts and whitefly artificial feeding through membranes. Interaction between GroEL and TYLCV was found to occur in the B biotype, but not in the Q biotype. This assay further showed that release of virions protected by GroEL occurs adjacent to the primary salivary glands. Taken together, the GroEL protein produced by Hamiltonella (present in the B biotype, but absent in the Q biotype) facilitates TYLCV transmission. The other symbionts from both biotypes do not seem to be involved in transmission of this virus.


Asunto(s)
Begomovirus/aislamiento & purificación , Enterobacteriaceae/fisiología , Hemípteros/microbiología , Hemípteros/virología , Enfermedades de las Plantas/virología , Simbiosis , Wolbachia/fisiología , Animales , Proteínas Bacterianas/metabolismo , Chaperonina 60/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , Vectores de Enfermedades , Enterobacteriaceae/metabolismo , Israel , Datos de Secuencia Molecular , Unión Proteica , Análisis de Secuencia de ADN , Técnicas del Sistema de Dos Híbridos , Wolbachia/metabolismo
9.
Insects ; 12(1)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451167

RESUMEN

The onion thrip, Thrips tabaci (Thysanoptera: Thripidae) is a major polyphagous pest that attacks a wide range of economically important crops, especially Allium species. The thrip's damage can result in yield loss of up to 60% in onions (Allium cepa). In the past few decades, thrip resistance to insecticides with various modes of actions have been documented. These include resistance to spinosad, a major active compound used against thrips, which was reported from Israel. Little is known about the molecular mechanisms underlying spinosad resistance in T. tabaci. We attempted to characterize the mechanisms involved in resistance to spinosad using quantitative transcriptomics. Susceptible (LC50 = 0.6 ppm) and resistant (LC50 = 23,258 ppm) thrip populations were collected from Israel. An additional resistant population (LC50 = 117 ppm) was selected in the laboratory from the susceptible population. De novo transcriptome analysis on the resistant and susceptible population was conducted to identify differently expressed genes (DGEs) that might be involved in the resistance against spinosad. In this analysis, 25,552 unigenes were sequenced, assembled, and functionally annotated, and more than 1500 DGEs were identified. The expression levels of candidate genes, which included cytochrome P450 and vittelogenin, were validated using quantitative RT-PCR. The cytochrome P450 expression gradually increased with the increase of the resistance. Higher expression levels of vitellogenin in the resistant populations were correlated with higher fecundity, suggesting a positive effect of the resistance on resistant populations. This research provides a novel genetic resource for onion thrips and a comprehensive molecular examination of resistant populations to spinosad. Those resources are important for future studies concerning thrips and resistance in insect pests regarding agriculture.

10.
BMC Microbiol ; 10: 142, 2010 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-20462452

RESUMEN

BACKGROUND: Whiteflies are cosmopolitan phloem-feeding pests that cause serious damage to many crops worldwide due to direct feeding and vectoring of many plant viruses. The sweetpotato whitefly Bemisia tabaci (Gennadius) and the greenhouse whitefly Trialeurodes vaporariorum (Westwood) are two of the most widespread and damaging whitefly species. To complete their unbalanced diet, whiteflies harbor the obligatory bacterium Portiera aleyrodidarum. B. tabaci further harbors a diverse array of secondary symbionts, including Hamiltonella, Arsenophonus, Cardinium, Wolbachia, Rickettsia and Fritschea. T. vaporariorum is only known to harbor P. aleyrodidarum and Arsenophonus. We conducted a study to survey the distribution of whitefly species in Croatia, their infection status by secondary symbionts, and the spatial distribution of these symbionts in the developmental stages of the two whitefly species. RESULTS: T. vaporariorum was found to be the predominant whitefly species across Croatia, while only the Q biotype of B. tabaci was found across the coastal part of the country. Arsenophonus and Hamiltonella were detected in collected T. vaporariorum populations, however, not all populations harbored both symbionts, and both symbionts showed 100% infection rate in some of the populations. Only the Q biotype of B. tabaci was found in the populations tested and they harbored Hamiltonella, Rickettsia, Wolbachia and Cardinium, while Arsenophonus and Fritschea were not detected in any B. tabaci populations. None of the detected symbionts appeared in all populations tested, and multiple infections were detected in some of the populations. All endosymbionts tested were localized inside the bacteriocyte in both species, but only Rickettsia and Cardinium in B. tabaci showed additional localization outside the bacteriocyte. CONCLUSIONS: Our study revealed unique co-infection patterns by secondary symbionts in B. tabaci and T. vaporariorum. Co-sharing of the bacteriocyte by the primary and different secondary symbionts is maintained through vertical transmission via the egg, and is unique to whiteflies. This system provides opportunities to study interactions among symbionts that co-inhabit the same cell in the same host: these can be cooperative or antagonistic, may affect the symbiotic contents over time, and may also affect the host by competing with the primary symbiont for space and resources.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Hemípteros/crecimiento & desarrollo , Hemípteros/microbiología , Simbiosis , Animales , Croacia , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Geografía , Hibridación Fluorescente in Situ , Reacción en Cadena de la Polimerasa , Densidad de Población , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Análisis de Secuencia de ADN
11.
J Anim Ecol ; 79(3): 563-70, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20163491

RESUMEN

1. Negative interspecific interactions, such as resource competition or reproductive interference, can lead to the displacement of species (species exclusion). 2. Here, we investigated the effect of life history, mating behaviour and adaptation to insecticides on species exclusion between cryptic whitefly species that make up the Bemisia tabaci species complex. We conducted population cage experiments independently in China, Australia, the United States and Israel to observe patterns of species exclusion between an invasive species commonly referred to as the B biotype and three other species commonly known as biotypes ZHJ1, AN and Q. 3. Although experimental conditions and species varied between regions, we were able to predict the observed patterns of exclusion in each region using a stochastic model that incorporated data on development time, mating behaviour and resistance to insecticides. 4. Between-species variation in mating behaviour was a more significant factor affecting species exclusion than variation in development time. Specifically, the ability of B to copulate more effectively than other species resulted in a faster rate of population increase for B, as well as a reduced rate of population growth for other species, leading to species exclusion. The greater ability of B to evolve resistance to insecticides also contributed to exclusion of other species in some cases. 5. Results indicate that an integrative analysis of the consequences of variation in life-history traits, mating behaviours and adaption to insecticides could provide a robust framework for predicting species exclusion following whitefly invasions.


Asunto(s)
Hemípteros/efectos de los fármacos , Hemípteros/fisiología , Resistencia a los Insecticidas , Insecticidas/farmacología , Conducta Sexual Animal/fisiología , Adaptación Fisiológica , Animales , Modelos Biológicos , Especificidad de la Especie , Procesos Estocásticos
12.
Microorganisms ; 8(5)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397333

RESUMEN

Endosymbionts harbored inside insects play critical roles in the biology of their insect host and can influence the transmission of pathogens by insect vectors. Bactericera trigonica infests umbelliferous plants and transmits the bacterial plant pathogen Candidatus Liberibacter solanacearum (CLso), causing carrot yellows disease. To characterize the bacterial diversity of B. trigonica, as a first step, we used PCR-restriction fragment length polymorphism (PCR-RFLP) and denaturing gradient gel electrophoresis (DGGE) analyses of 16S rDNA to identify Sodalis and Spiroplasma endosymbionts. The prevalence of both symbionts in field-collected psyllid populations was determined: Sodalis was detected in 100% of field populations, while Spiroplasma was present in 82.5% of individuals. Phylogenetic analysis using 16S rDNA revealed that Sodalis infecting B. trigonica was more closely related to symbionts infecting weevils, stink bugs and tsetse flies than to those from psyllid species. Using fluorescent in situ hybridization and immunostaining, Sodalis was found to be localized inside the nuclei of the midgut cells and bacteriocytes. Spiroplasma was restricted to the cytoplasm of the midgut cells. We further show that a recently reported Bactericera trigonica densovirus (BtDNV), a densovirus infecting B. trigonica was detected in 100% of psyllids and has reduced titers inside CLso-infected psyllids by more than two-fold compared to CLso uninfected psyllids. The findings of this study will help to increase our understanding of psyllid-endosymbiont interactions.

13.
Gigascience ; 9(11)2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33185242

RESUMEN

BACKGROUND: Many plant viruses are vector-borne and depend on arthropods for transmission between host plants. Begomoviruses, the largest, most damaging and emerging group of plant viruses, infect hundreds of plant species, and new virus species of the group are discovered each year. Begomoviruses are transmitted by members of the whitefly Bemisia tabaci species complex in a persistent-circulative manner. Tomato yellow leaf curl virus (TYLCV) is one of the most devastating begomoviruses worldwide and causes major losses in tomato crops, as well as in many agriculturally important plant species. Different B. tabaci populations vary in their virus transmission abilities; however, the causes for these variations are attributed among others to genetic differences among vector populations, as well as to differences in the bacterial symbionts housed within B. tabaci. RESULTS: Here, we performed discovery proteomic analyses in 9 whitefly populations from both Middle East Asia Minor I (MEAM1, formerly known as B biotype) and Mediterranean (MED, formerly known as Q biotype) species. We analysed our proteomic results on the basis of the different TYLCV transmission abilities of the various populations included in the study. The results provide the first comprehensive list of candidate insect and bacterial symbiont (mainly Rickettsia) proteins associated with virus transmission. CONCLUSIONS: Our data demonstrate that the proteomic signatures of better vector populations differ considerably when compared with less efficient vector populations in the 2 whitefly species tested in this study. While MEAM1 efficient vector populations have a more lenient immune system, the Q efficient vector populations have higher abundance of proteins possibly implicated in virus passage through cells. Both species show a strong link of the facultative symbiont Rickettsia to virus transmission.


Asunto(s)
Begomovirus , Hemípteros , Solanum lycopersicum , Animales , Bacterias , Enfermedades de las Plantas , Proteómica
14.
FASEB J ; 22(7): 2591-9, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18285399

RESUMEN

Symbiotic relationships with bacteria are common within the Arthropoda, with interactions that substantially influence the biology of both partners. The symbionts' spatial distribution is essential for understanding key aspects of this relationship, such as bacterial transmission, phenotype, and dynamics. In this study, fluorescence in situ hybridization was used to localize five secondary symbionts from various populations and biotypes of the sweet potato whitefly Bemisia tabaci: Hamiltonella, Arsenophonus, Cardinium, Wolbachia, and Rickettsia. All five symbionts were found to be located with the primary symbiont Portiera inside the bacteriocytes--cells specifically modified to house bacteria--but within these cells, they occupied various niches. The intrabacteriocyte distribution pattern of Rickettsia differed from what has been described previously. Cardinium and Wolbachia were found in other host tissues as well. Because all symbionts share the same cell, bacteriocytes in B. tabaci represent a unique intracellular ecosystem. This phenomenon may be a result of the direct enclosure of the bacteriocyte in the egg during oogenesis, providing a useful mechanism for efficient vertical transmission by "hitching a ride" with Portiera. On the other hand, cohabitation in the same cell provides ample opportunities for interactions among symbionts that can either facilitate (cooperation) or limit (warfare) symbiotic existence.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Ecosistema , Hemípteros/microbiología , Espacio Intracelular/fisiología , Rickettsia/fisiología , Wolbachia/fisiología , Animales , Femenino , Hibridación Fluorescente in Situ , Ovario/microbiología , Óvulo/microbiología , Simbiosis
15.
Pest Manag Sci ; 65(1): 5-13, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18785225

RESUMEN

BACKGROUND: Spiromesifen is a novel insecticidal/acaricidal compound derived from spirocyclic tetronic acids that acts effectively against whiteflies and mites via inhibition of acetyl-CoA-carboxylase, a lipid metabolism enzyme. The effects of spiromesifen on the developmental stages of the whitefly Bemisia tabaci (Gennadius) were studied under laboratory conditions to generate baseline action thresholds for field evaluations of the compound. RESULTS: Adult B. tabaci mortality rate after spiromesifen treatment (5 mg L(-1)) was 40%. Treatment with 0.5 mg L(-1) reduced fecundity per female by more than 80%, and fertility was almost nil. LC(50) for eggs was 2.6 mg L(-1), and for first instar 0.5 mg L(-1). Scanning electron microscopy revealed that eggs laid by treated adult females had an abnormally perforated chorion, and females were unable to complete oviposition. Light and fluorescent microscopy showed significantly smaller eggs following treatment, and smaller, abnormally formed and improperly localized bacteriomes in eggs and nymphs. The number of ovarioles counted in females treated with 5 mg L(-1) was significantly reduced. Spiromesifen showed no cross-resistance with other commonly used insecticides from different chemical groups, and resistance monitoring in Israel showed no development of field resistance to this insecticide after 1 year of use. CONCLUSION: The strong effect on juvenile stages of B. tabaci with a unique mode of action and the absence of cross-resistance with major commonly used insecticides from different chemical groups suggest the use of spiromesifen in pest and resistance management programmes.


Asunto(s)
Hemípteros/crecimiento & desarrollo , Insecticidas/toxicidad , Compuestos de Espiro/toxicidad , Animales , Larva/efectos de los fármacos , Óvulo/efectos de los fármacos , Reproducción/fisiología
16.
Front Physiol ; 10: 557, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31133883

RESUMEN

The whitefly B. tabaci is a global pest and transmits extremely important plant viruses especially begomoviruses, that cause substantial crop losses. B. tabaci is one of the top invasive species worldwide and have developed resistance to all major pesticide classes. One of the promising alternative ways for controlling this pest is studying its genetic makeup for identifying specific target proteins which are critical for its development and ability to transmit viruses. Tomato yellow leaf curl virus (TYLCV) is the most economically important and well-studied begomovirus transmitted by B. tabaci, in a persistent-circulative manner. Recently, we reported that B. tabaci Cyclophilin B (CypB) and heat shock protein 70 proteins (hsp70) interact and co-localize with TYLCV in the whitefly midgut, on the virus transmission pathway, and that both proteins have a significant role in virus transmission. Here, we extended the previous work and used the Tobacco rattle virus (TRV) plant-mediated RNA silencing system for knocking down both genes and testing the effect of their silencing on whitefly viability and virus transmission. Portions of these two genes were cloned into TRV constructs and tomato plants were infected and used for whitefly feeding and transmission experiments. Following whitefly feeding on TRV-plants, the expression levels of cypB and hsp70 in adult B. tabaci significantly decreased over 72 h feeding period. The knockdown in the expression of both genes was further shown in the first generation of silenced whiteflies, where phenotypic abnormalities in the adult, wing, nymph and bacteriosomes development and structure were observed. Additionally, high mortality rates that reached more than 80% among nymphs and adults were obtained. Finally, silenced whitefly adults with both genes showed decreased ability to transmit TYLCV under lab conditions. Our results suggest that plant-mediated silencing of both cypB and hsp70 have profound effects on whitefly development and its ability to transmit TYLCV.

17.
Insects ; 10(9)2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31480697

RESUMEN

Candidatus Liberibacter solanacerum (CLso), transmitted by Bactericera trigonica in a persistent and propagative mode causes carrot yellows disease, inflicting hefty economic losses. Understanding the process of transmission of CLso by psyllids is fundamental to devise sustainable management strategies. Persistent transmission involves critical steps of adhesion, cell invasion, and replication before passage through the midgut barrier. This study uses a transcriptomic approach for the identification of differentially expressed genes with CLso infection in the midguts, adults, and nymphs of B. trigonica and their putative involvement in CLso transmission. Several genes related to focal adhesion and cellular invasion were upregulated after CLso infection. Interestingly, genes involved with proper functionality of the endoplasmic reticulum (ER) were upregulated in CLso infected samples. Notably, genes from the endoplasmic reticulum associated degradation (ERAD) and the unfolded protein response (UPR) pathway were overexpressed after CLso infection. Marker genes of the ERAD and UPR pathways were also upregulated in Diaphorina citri when infected with Candidatus Liberibacter asiaticus (CLas). Upregulation of the ERAD and UPR pathways indicate induction of ER stress by CLso/CLas in their psyllid vector. The role of ER in bacteria-host interactions is well-documented; however, the ER role following pathogenesis of CLso/CLas is unknown and requires further functional validation.

18.
Pest Manag Sci ; 64(8): 789-92, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18432613

RESUMEN

BACKGROUND: The presence of certain symbiotic microorganisms may be associated with insecticide resistance in insects. The authors compared the susceptibility of two isofemale lines, Rickettsia-plus and Rickettsia-free, of the sweet potato whitefly Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) to major insecticides from different chemical groups, including imidacloprid, acetamiprid, thiamethoxam, pyriproxyfen, spiromesifen and diafenthiuron. RESULTS: While the Rickettsia-plus and Rickettsia-free lines showed no differences in their susceptibility to imidacloprid and diafenthiuron, higher susceptibility of the Rickettsia-plus line to acetamiprid, thiamethoxam, spiromesifen and especially pyriproxyfen was observed. LC(90) values indicated that the Rickettsia-free line was 15-fold more resistant to pyriproxyfen than the Rickettsia-plus line. CONCLUSION: Findings indicate that the infection status of B. tabaci populations by Rickettsia is an important consideration that should be taken into account when performing resistance monitoring studies, and may help in understanding the dynamics of B. tabaci resistance, symbiont-pest associations in agricultural systems and the biological impact of Rickettsia on whitefly biology.


Asunto(s)
Hemípteros/efectos de los fármacos , Hemípteros/microbiología , Insecticidas/farmacología , Piridinas/farmacología , Rickettsia , Animales , Femenino , Resistencia a los Insecticidas , Simbiosis
19.
Zookeys ; (779): 19-25, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30108428

RESUMEN

The egg parasitpoids Trichogrammadanausicida (Nagaraja) and Trichogrammacacaeciae (Marchal) (Hymenoptera: Trichogrammatidae), are reported for the first time in Israel. Moreover, our discovery of T.danausicida is the first report of this parasitoid species outside of India. The occurrence of those trichogrammatids was first discovered and documented in May 2016 during a survey of egg parasitoids of the False codling moth Thaumatotibialeucotreta (Lepidoptera: Tortricidae). The field survey was conducted on castor bean fruits (Ricinuscommunis) in the Israeli central coastal plain. The identity of the parasitoids was revealed by means of sequencing a portion of the cytochrome oxidase I gene (COI) of the studied parasitoids.

20.
Insect Biochem Mol Biol ; 37(7): 732-8, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17550829

RESUMEN

The hemipteran whitefly Bemisia tabaci (Gennadius) species complex and the plant viruses they transmit pose major constraints to vegetable and fiber production, worldwide. The whitefly tissue- and developmental-specific gene expression has not been exhaustively studied despite its economic importance. In 2002, a functional genomic project was initiated, which generated several thousands expressed sequence tags (ESTs) and their sequence. This project provides the basic information to design experiments aimed at understanding and manipulating whitefly gene expression. In this communication, for the first time we provide evidence that the RNA interference mechanism discovered in many organisms, including in Hemiptera, is active in B. tabaci. By injecting into the body cavity long double-stranded RNA (dsRNA) molecules, specifically directed against genes uniquely expressed in the midgut and salivary glands, we were able to significantly inhibit the expression of the targeted mRNA in the different organs. Gene expression levels in RNAi-silenced whiteflies were reduced up to 70% compared to whiteflies injected with buffer or with a green fluorescent protein (GFP)-specific dsRNA. Phenotypic effects were observed in B. tabaci ovaries following dsRNA targeting the whitefly Drosophila chickadee homologue. Disruption of whitefly gene expression opens the door to new strategies aimed at curbing down the deleterious effects of this insect pest to agriculture.


Asunto(s)
Silenciador del Gen , Genes de Insecto/genética , Hemípteros/genética , Control de Insectos/métodos , Insectos Vectores/virología , Control Biológico de Vectores , ARN Bicatenario/administración & dosificación , Animales , Bases de Datos Genéticas , Femenino , Geminiviridae , Expresión Génica , Interferencia de ARN/efectos de los fármacos , ARN Bicatenario/genética , Glándulas Salivales/anatomía & histología , Glándulas Salivales/citología , Glándulas Salivales/ultraestructura , Cigoto/citología , Cigoto/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA