RESUMEN
Nucleic acid amplification tests (NAATs) are the primary means of identifying acute infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Accurate and fast test results may permit more efficient use of protective and isolation resources and allow rapid therapeutic interventions. We evaluated the analytical and clinical performance characteristics of the Xpert Xpress SARS-CoV-2 (Xpert) test, a rapid, automated molecular test for SARS-CoV-2. Analytical sensitivity and specificity/interference were assessed with infectious SARS-CoV-2; other infectious coronavirus species, including SARS-CoV; and 85 nasopharyngeal swab specimens positive for other respiratory viruses, including endemic human coronaviruses (hCoVs). Clinical performance was assessed using 483 remnant upper- and lower-respiratory-tract specimens previously analyzed by standard-of-care (SOC) NAATs. The limit of detection of the Xpert test was 0.01 PFU/ml. Other hCoVs, including Middle East respiratory syndrome coronavirus, were not detected by the Xpert test. SARS-CoV, a closely related species in the subgenus Sarbecovirus, was detected by a broad-range target (E) but was distinguished from SARS-CoV-2 (SARS-CoV-2-specific N2 target). Compared to SOC NAATs, the positive agreement of the Xpert test was 219/220 (99.5%), and the negative agreement was 250/261 (95.8%). A third tie-breaker NAAT resolved all but three of the discordant results in favor the Xpert test. The Xpert test provided sensitive and accurate detection of SARS-CoV-2 in a variety of upper- and lower-respiratory-tract specimens. The high sensitivity and short time to results of approximately 45 min may impact patient management.
Asunto(s)
Betacoronavirus/aislamiento & purificación , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Neumonía Viral/diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Automatización de Laboratorios/métodos , Betacoronavirus/genética , COVID-19 , Prueba de COVID-19 , Niño , Preescolar , Infecciones por Coronavirus/virología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Nasofaringe/virología , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Sensibilidad y Especificidad , Adulto JovenRESUMEN
Detecting colonization of patients with carbapenemase-producing bacteria can be difficult. This study compared the sensitivity and specificity of a PCR-based method (Xpert MDRO) for detecting blaKPC, blaNDM, and blaVIM carbapenem resistance genes using GeneXpert cartridges to the results of culture with and without a broth enrichment step on 328 rectal, perirectal, and stool samples. The culture method included direct inoculation of a MacConkey agar plate on which a 10-µg meropenem disk was placed and plating on MacConkey agar after overnight enrichment of the sample in MacConkey broth containing 1 µg/ml of meropenem. Forty-three (13.1%) samples were positive by PCR for blaKPC and 11 (3.4%) were positive for blaVIM; none were positive for blaNDM. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the PCR assay for blaKPC were 100%, 99.0%, 93.0%, and 100%, respectively, compared to broth enrichment culture and sequencing of target genes. The sensitivity, specificity, PPV, and NPV of the assay for blaVIM were 100%, 99.4%, 81.8%, and 100%, respectively. Since none of the clinical samples contained organisms with blaNDM, 66 contrived stool samples were prepared at various dilutions using three Klebsiella pneumoniae isolates containing blaNDM. The PCR assay showed 100% positivity at dilutions from 300 to 1,800 CFU/ml and 93.3% at 150 CFU/ml. The Xpert MDRO PCR assay required 2 min of hands-on time and 47 min to complete. Rapid identification of patients colonized with carbapenemase-producing organisms using multiplex PCR may help hospitals to improve infection control activities.
Asunto(s)
Proteínas Bacterianas/genética , Portador Sano/diagnóstico , Bacterias Gramnegativas/enzimología , Bacterias Gramnegativas/aislamiento & purificación , Infecciones por Bacterias Gramnegativas/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena de la Polimerasa/métodos , beta-Lactamasas/genética , Proteínas Bacterianas/metabolismo , Técnicas Bacteriológicas/métodos , Portador Sano/microbiología , Heces/microbiología , Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Perineo/microbiología , Recto/microbiología , Sensibilidad y Especificidad , beta-Lactamasas/metabolismoRESUMEN
We performed the first studies of analytic sensitivity, analytic specificity, and dynamic range for the new Xpert MTB/RIF assay, a nucleic acid amplification-based diagnostic system that detects Mycobacterium tuberculosis and rifampin (RIF) resistance in under 2 h. The sensitivity of the assay was tested with 79 phylogenetically and geographically diverse M. tuberculosis isolates, including 42 drug-susceptible isolates and 37 RIF-resistant isolates containing 13 different rpoB mutations or mutation combinations. The specificity of the assay was tested with 89 nontuberculosis bacteria, fungi, and viruses. The Xpert MTB/RIF assay correctly identified all 79 M. tuberculosis isolates and correctly excluded all 89 nontuberculosis isolates. RIF resistance was correctly identified in all 37 resistant isolates and in none of the 42 susceptible isolates. Dynamic range was assessed by adding 10(2) to 10(7) CFU of M. tuberculosis into M. tuberculosis-negative sputum samples. The assay showed a log-linear relationship between cycle threshold and input CFU over the entire concentration range. Resistance detection in the presence of different mixtures of RIF-resistant and RIF-susceptible DNA was assessed. Resistance detection was dependent on the particular mutation and required between 65% and 100% mutant DNA to be present in the sample for 95% certainty of resistance detection. Finally, we studied whether assay specificity could be affected by cross-contaminating amplicons generated by the GenoType MTBDRplus assay. M. tuberculosis was not detected until at least 10(8) copies of an MTBDRplus amplicon were spiked into 1 ml of sputum, suggesting that false-positive results would be unlikely to occur.
Asunto(s)
Antibióticos Antituberculosos/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium tuberculosis , Técnicas de Amplificación de Ácido Nucleico/métodos , Rifampin/farmacología , Proteínas Bacterianas/genética , ADN Bacteriano/análisis , ARN Polimerasas Dirigidas por ADN , Modelos Lineales , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Esputo/microbiologíaRESUMEN
Current nucleic acid amplification methods to detect Mycobacterium tuberculosis are complex, labor-intensive, and technically challenging. We developed and performed the first analysis of the Cepheid Gene Xpert System's MTB/RIF assay, an integrated hands-free sputum-processing and real-time PCR system with rapid on-demand, near-patient technology, to simultaneously detect M. tuberculosis and rifampin resistance. Analytic tests of M. tuberculosis DNA demonstrated a limit of detection (LOD) of 4.5 genomes per reaction. Studies using sputum spiked with known numbers of M. tuberculosis CFU predicted a clinical LOD of 131 CFU/ml. Killing studies showed that the assay's buffer decreased M. tuberculosis viability by at least 8 logs, substantially reducing biohazards. Tests of 23 different commonly occurring rifampin resistance mutations demonstrated that all 23 (100%) would be identified as rifampin resistant. An analysis of 20 nontuberculosis mycobacteria species confirmed high assay specificity. A small clinical validation study of 107 clinical sputum samples from suspected tuberculosis cases in Vietnam detected 29/29 (100%) smear-positive culture-positive cases and 33/39 (84.6%) or 38/53 (71.7%) smear-negative culture-positive cases, as determined by growth on solid medium or on both solid and liquid media, respectively. M. tuberculosis was not detected in 25/25 (100%) of the culture-negative samples. A study of 64 smear-positive culture-positive sputa from retreatment tuberculosis cases in Uganda detected 63/64 (98.4%) culture-positive cases and 9/9 (100%) cases of rifampin resistance. Rifampin resistance was excluded in 54/55 (98.2%) susceptible cases. Specificity rose to 100% after correcting for a conventional susceptibility test error. In conclusion, this highly sensitive and simple-to-use system can detect M. tuberculosis directly from sputum in less than 2 h.
Asunto(s)
Antituberculosos/farmacología , Técnicas Bacteriológicas/métodos , Farmacorresistencia Bacteriana , Mycobacterium tuberculosis/efectos de los fármacos , Sistemas de Atención de Punto , Rifampin/farmacología , Tuberculosis/diagnóstico , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Sensibilidad y Especificidad , Esputo/microbiología , Tuberculosis/microbiología , Uganda , Vietnam , Adulto JovenRESUMEN
The ViroSeq human immunodeficiency virus type 1 (HIV-1) genotyping system is an integrated system for identification of drug resistance mutations in HIV-1 protease and reverse transcriptase (RT). Reagents are included for sample preparation, reverse transcription, PCR amplification, and sequencing. Software is provided to assemble and edit sequence data and to generate a drug resistance report. We determined the sensitivity and specificity of the ViroSeq system for mutation detection using an ABI PRISM 3100 genetic analyzer with a set of clinical samples and recombinant viruses. Twenty clinical plasma samples (viral loads, 1,800 to 10,500 copies/ml) were characterized by cloning and sequencing individual viral variants. Twelve recombinant-virus samples (viral loads, approximately 2,000 to 5,000 copies/ml) were also prepared. Eleven recombinant-virus samples contained drug resistance mutations as 40% mixtures. One recombinant-virus sample contained an insertion at codon 69 in RT (100% mutant). Plasma and recombinant-virus samples were analyzed using the ViroSeq system. Each sample was analyzed on three consecutive days at each of three testing laboratories. The sensitivity of mutation detection was 99.65% for the clinical plasma samples and 99.7% for the recombinant-virus preparations. The specificity of mutation detection was 99.95% for the clinical samples and 100% for the recombinant-virus mixtures. The base calling accuracy of the 3100 instrument was 99.91%. Mutations in clinical plasma samples and recombinant-virus samples were detected with high sensitivity and specificity, including mutations present as mixtures. This report supports the use of the ViroSeq system for identification of drug resistance mutations in HIV-1 protease and RT genes.