Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 287(42): 35192-35200, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22918829

RESUMEN

NMDA ionotropic glutamate receptors gate the cytoplasmic influx of calcium, which may, depending on the intensity of the stimulus, subserve either normal synaptic communication or cell death. We demonstrate that when isolated mitochondria are exposed to calcium and NMDA agonists, there is a significant increase in mitochondrial calcium levels. The agonist/antagonist response studies on purified mitochondria suggest the presence of a receptor on mitochondria with features similar to plasma membrane NMDA receptors. Immunogold electron microscopy of hippocampal tissue sections revealed extensive localization of NR2a subunit immunoreactivity on mitochondria. Transient transfection of neuronal GT1-7 cells with an NR1-NR2a NMDA receptor subunit cassette specifically targeting mitochondria resulted in a significant increase in mitochondrial calcium and neuroprotection against glutamate-induced cell death. Mitochondria prepared from GT1-7 cells in which the NR1 subunit of NMDA receptors was silenced demonstrated a decrease in calcium uptake. Our findings are the first to demonstrate that mitochondria express a calcium transport protein that shares characteristics with the NMDA receptor and may play a neuroprotective role.


Asunto(s)
Calcio/metabolismo , Proteínas Portadoras/metabolismo , Hipocampo/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Calcio/farmacología , Proteínas Portadoras/genética , Línea Celular , Hipocampo/ultraestructura , Masculino , Mitocondrias/genética , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Proteínas del Tejido Nervioso/genética , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Transfección
2.
Proc Natl Acad Sci U S A ; 106(27): 11418-23, 2009 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-19549818

RESUMEN

Membrane depolarization activates voltage-dependent Ca(2+) channels (VDCCs) inducing Ca(2+) release via ryanodine receptors (RyRs), which is obligatory for skeletal and cardiac muscle contraction and other physiological responses. However, depolarization-induced Ca(2+) release and its functional importance as well as underlying signaling mechanisms in smooth muscle cells (SMCs) are largely unknown. Here we report that membrane depolarization can induce RyR-mediated local Ca(2+) release, leading to a significant increase in the activity of Ca(2+) sparks and contraction in airway SMCs. The increased Ca(2+) sparks are independent of VDCCs and the associated extracellular Ca(2+) influx. This format of local Ca(2+) release results from a direct activation of G protein-coupled, M(3) muscarinic receptors in the absence of exogenous agonists, which causes activation of Gq proteins and phospholipase C, and generation of inositol 1,4,5-triphosphate (IP(3)), inducing initial Ca(2+) release through IP(3) receptors and then further Ca(2+) release via RyR2 due to a local Ca(2+)-induced Ca(2+) release process. These findings demonstrate an important mechanism for Ca(2+) signaling and attendant physiological function in SMCs.


Asunto(s)
Calcio/metabolismo , Potenciales de la Membrana/fisiología , Músculo Liso/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Ratones , Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Potasio/farmacología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
3.
Mitochondrion ; 59: 76-82, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33894358

RESUMEN

Our laboratory has demonstrated that functional N-methyl-d-aspartate-like receptors are present on neuronal mitochondria (NMDAm). This novel site gates the influx of Ca2+ and causes a several-fold increase in ATP levels. Although elevations in ATP in other cell types have been linked to increases in mitochondrial Ca2+, it has not been established whether the same holds true for calcium uptake via NMDAm. In this study, we have investigated the effect of NMDAm activation on a variety of bioenergetic parameters. Our findings suggest that mitochondrial bioenergetics are not only modulated by NMDAm activation in a Ca2+-dependent but also in a Ca2+-independent manner.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Complejo I de Transporte de Electrón/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Metabolismo Energético , Regulación de la Expresión Génica , Ratones , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Neuronas/citología
4.
Am J Respir Cell Mol Biol ; 40(6): 663-71, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19011160

RESUMEN

Protein kinase C (PKC) is known to regulate ryanodine receptor (RyR)-mediated local Ca(2+) signaling (Ca(2+) spark) in airway and vascular smooth muscle cells (SMCs), but its specific molecular mechanisms and functions still remain elusive. In this study, we reveal that, in airway SMCs, specific PKCepsilon peptide inhibitor and gene deletion significantly increased the frequency of Ca(2+) sparks, and decreased the amplitude of Ca(2+) sparks in the presence of xestospogin-C to eliminate functional inositol 1,4,5-triphosphate receptors. PKCepsilon activation with phorbol-12-myristate-13-acetate significantly decreased Ca(2+) spark frequency and increased Ca(2+) spark amplitude. The effect of PKCepsilon inhibition or activation on Ca(2+) sparks was completely lost in PKCepsilon(-/-) cells. PKCepsilon inhibition or PKCepsilon activation was unable to affect Ca(2+) sparks in RyR1(-/-) and RyR1(+/-) cells. Modification of RyR2 activity by FK506-binding protein 12.6 homozygous or RyR2 heterozygous gene deletion did not prevent the effect of PKCepsilon inhibition or activation. RyR3 homogenous gene deletion did not block the effect of PKCepsilon inhibition and activation, either. PKCepsilon inhibition promotes agonist-induced airway muscle contraction, whereas PKCepsilon activation produces an opposite effect. Taken together, these results indicate that PKCepsilon regulates Ca(2+) sparks by specifically interacting with RyR1, which plays an important role in the control of contractile responses in airway SMCs.


Asunto(s)
Señalización del Calcio , Miocitos del Músculo Liso/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Animales , Calcio/metabolismo , Eliminación de Gen , Homocigoto , Masculino , Ratones , Microscopía Fluorescente , Modelos Biológicos , Células Musculares/metabolismo , Contracción Muscular , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Transducción de Señal
5.
Free Radic Biol Med ; 45(9): 1223-31, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18638544

RESUMEN

The importance of NADPH oxidase (Nox) in hypoxic responses in hypoxia-sensing cells, including pulmonary artery smooth muscle cells (PASMCs), remains uncertain. In this study, using Western blot analysis we found that the major Nox subunits Nox1, Nox4, p22(phox), p47(phox), and p67(phox) were equivalently expressed in mouse pulmonary and systemic (mesenteric) arteries. However, acute hypoxia significantly increased Nox activity and translocation of p47(phox) protein to the plasma membrane in pulmonary, but not mesenteric, arteries. The Nox inhibitor apocynin and p47(phox) gene deletion attenuated the hypoxic increase in intracellular concentrations of reactive oxygen species and Ca(2+) ([ROS](i) and [Ca(2+)](i)), as well as contractions in mouse PASMCs, and abolished the hypoxic activation of Nox in pulmonary arteries. The conventional/novel protein kinase C (PKC) inhibitor chelerythrine, specific PKCepsilon translocation peptide inhibitor, and PKCepsilon gene deletion, but not the conventional PKC inhibitor GO6976, prevented the hypoxic increase in Nox activity in pulmonary arteries and [ROS](i) in PASMCs. The PKC activator phorbol 12-myristate 13-acetate could increase Nox activity in pulmonary and mesenteric arteries. Inhibition of mitochondrial ROS generation with rotenone or myxothiazol prevented hypoxic activation of Nox. Glutathione peroxidase-1 (Gpx1) gene overexpression to enhance H(2)O(2) removal significantly inhibited the hypoxic activation of Nox, whereas Gpx1 gene deletion had the opposite effect. Exogenous H(2)O(2) increased Nox activity in pulmonary and mesenteric arteries. These findings suggest that acute hypoxia may distinctively activate Nox to increase [ROS](i) through the mitochondrial ROS-PKCepsilon signaling axis, providing a positive feedback mechanism to contribute to the hypoxic increase in [ROS](i) and [Ca(2+)](i) as well as contraction in PASMCs.


Asunto(s)
Calcio/metabolismo , Regulación Enzimológica de la Expresión Génica , Hipoxia , Mitocondrias/metabolismo , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasas/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Arteria Pulmonar/metabolismo , Especies Reactivas de Oxígeno , Animales , Inhibidores Enzimáticos/farmacología , Ratones , Ratones Transgénicos , Modelos Biológicos , Proteína Quinasa C-epsilon/fisiología , Transducción de Señal
6.
J Neurotrauma ; 24(5): 895-908, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17518543

RESUMEN

Cerebral ischemia followed by reperfusion activates numerous pathways that lead to cell death. One such pathway involves the release of large quantities of the excitatory amino acid glutamate into the synapse and activation of N-methyl-D-aspartate receptors. This causes an increase in mitochondrial calcium levels ([Ca(2+)](m)) and a production of reactive oxygen species (ROS), both of which may induce the mitochondrial permeability transition (MPT). As a consequence, there is eventual mitochondrial failure culminating in either apoptotic or necrotic cell death. Thus, agents that inhibit MPT might prove useful as therapeutic interventions in cerebral ischemia. In this study, we have investigated the neuroprotective efficacy of the novel compound NIM811. Similar in structure of its parent compound cyclosporin A, NIM811 is a potent inhibitor of the MPT. Unlike cyclosporin A, however, it is essentially void of immunosuppressive actions, allowing the role of MPT to be clarified in ischemia/reperfusion injury. The results of these studies demonstrate that NIM811 provides almost 40% protection in a model of transient focal cerebral ischemia. This was associated with a nearly 10% reduction in mitochondrial reactive species formation and 34% and 38% reduction of cytochrome c release in core and penumbra, respectively. Treatment with NIM811 also increased calcium retention capacity by approximately 20%. Interestingly, NIM811 failed to improve ischemia-induced impairment of bioenergetics. The neuroprotective effects of NIM811 were not due to drug-induced alterations in cerebral perfusion after ischemia. Activation of MPT appears to be an important process in ischemia/reperfusion injury and may be a therapeutic target.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Ciclosporina/farmacología , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Degeneración Nerviosa/tratamiento farmacológico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Infarto Encefálico/tratamiento farmacológico , Infarto Encefálico/metabolismo , Infarto Encefálico/fisiopatología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Ciclosporina/uso terapéutico , Citocromos c/antagonistas & inhibidores , Citocromos c/metabolismo , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Masculino , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Poro de Transición de la Permeabilidad Mitocondrial , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Neuronas/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ratas , Ratas Endogámicas SHR , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Resultado del Tratamiento
7.
J Neurotrauma ; 24(5): 798-811, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17518535

RESUMEN

Following experimental traumatic brain injury (TBI), a rapid and significant necrosis occurs at the site of injury which coincides with significant mitochondrial dysfunction. The present study is driven by the hypothesis that TBI-induced glutamate release increases mitochondrial Ca(2+)cycling/overload, ultimately leading to mitochondrial dysfunction. Based on this premise, mitochondrial uncoupling during the acute phases of TBI-induced excitotoxicity should reduce mitochondrial Ca(2+) uptake (cycling) and reactive oxygen species (ROS) production since both are mitochondrial membrane potential dependent. In the present study, we utilized a cortical impact model of TBI to assess the potential use of mitochondrial uncouplers (2,4-DNP, FCCP) as a neuroprotective therapy. Young adult male rats were intraperitoneally administered vehicle (DMSO), 2,4-DNP (5 mg/kg), or FCCP (2.5 mg/kg) at 5 min post-injury. All animals treated with the uncouplers demonstrated a significant reduction in the amount of cortical damage and behavioral improvement following TBI. In addition, mitochondria isolated from the injured cortex at 3 or 6 h post-injury demonstrated that treatment with the uncouplers significantly improved several parameters of mitochondrial bioenergetics. These results demonstrate that post-injury treatment with mitochondrial uncouplers significantly (p < 0.01) increases cortical tissue sparing ( approximately 12%) and significantly (p< 0.01) improves behavioral outcome following TBI. The mechanism of neuroprotection most likely involves the maintenance of mitochondrial homeostasis by reducing mitochondrial Ca(2+) loading and subsequent mitochondrial dysfunction. These results further implicate mitochondrial dysfunction as an early event in the pathophysiology of TBI and that targeting acute mitochondrial events can result in long-term neuroprotection and improve behavioral outcome following brain injury.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Degeneración Nerviosa/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Desacopladores/farmacología , 2,4-Dinitrofenol/farmacología , 2,4-Dinitrofenol/uso terapéutico , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/fisiopatología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/uso terapéutico , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Masculino , Mitocondrias/metabolismo , Degeneración Nerviosa/etiología , Degeneración Nerviosa/prevención & control , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Resultado del Tratamiento , Desacopladores/uso terapéutico
8.
Neurosci Lett ; 623: 47-51, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27132085

RESUMEN

N-methyl-d-aspartate (NMDA) receptors have long been known to be associated with the plasma membrane, providing a channel for the passage of extracellular Ca(2+) into the cytosol during synaptic transmission. Recent results from our laboratory indicate that in addition to this classic location, an NMDA-sensitive site (NMDAm) may also exist within the inner mitochondrial membrane. We report direct exposure of mitochondrial to NMDA enhances the production of reactive oxygen species and attenuate ROS-induced cytochrome c release, all the while slowing the rate of Ca(2+)-induced mitochondrial swelling. Treatment with NMDA did not alter the mitochondrial membrane potential. The findings of this study lend further support for the existence of NMDAm and suggest that this site may serve to stabilize mitochondrial function.


Asunto(s)
Mitocondrias/fisiología , N-Metilaspartato/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Citocromos c/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/efectos de los fármacos , Tamaño Mitocondrial , N-Metilaspartato/farmacología , Especies Reactivas de Oxígeno/metabolismo
9.
J Neurotrauma ; 22(10): 1142-9, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16238490

RESUMEN

It is now generally accepted that excitotoxic cell death involves bioenergetic failure resulting from the cycling of Ca2+ and the generation of reactive oxygen species (ROS) by mitochondria. Both Ca2+ cycling and ROS formation by mitochondria are dependent on the mitochondrial membrane potential (Deltapsi(m)) that results from the proton gradient that is generated across the inner membrane. Mitochondrial uncoupling refers to a condition in which protons cross the inner membrane back into the matrix while bypassing the ATP synthase. As a consequence of this "short-circuit," there is a reduction in Deltapsi(m). We have previously demonstrated that animals treated with the classic uncoupling agent 2,4-dinitrophenol (DNP) show significant protection against brain damage following striatal injections of the NMDA agonist quinolinic acid (QA). In an effort to elucidate the mechanism of neuroprotection, we have assessed the effects of DNP on several parameters of mitochondrial function caused by QA. The results presented herein demonstrate that treatment with DNP attenuates QA-induced increases in mitochondrial Ca2+ levels and ROS formation and also improves mitochondrial respiration. Our findings indicate that DNP may confer protection against acute brain injury involving excitotoxic pathways by mechanisms that maintain mitochondrial function.


Asunto(s)
2,4-Dinitrofenol/farmacología , Cuerpo Estriado/efectos de los fármacos , Homeostasis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Desacopladores/farmacología , Animales , Respiración de la Célula/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/administración & dosificación , Inyecciones Intraventriculares , Masculino , Mitocondrias/metabolismo , Ácido Quinolínico/administración & dosificación , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
10.
Free Radic Biol Med ; 50(8): 945-52, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21238580

RESUMEN

This study was designed to determine whether: (1) hypoxia could directly affect ROS production in isolated mitochondria and mitochondrial complex III from pulmonary artery smooth muscle cells (PASMCs) and (2) Rieske iron-sulfur protein in complex III might mediate hypoxic ROS production, leading to hypoxic pulmonary vasoconstriction (HPV). Our data, for the first time, demonstrate that hypoxia significantly enhances ROS production, measured by the standard ROS indicator dichlorodihydrofluorescein/diacetate, in isolated mitochondria from PASMCs. Studies using the newly developed, specific ROS biosensor pHyPer have found that hypoxia increases mitochondrial ROS generation in isolated PASMCs as well. Hypoxic ROS production has also been observed in isolated complex III. Rieske iron-sulfur protein silencing using siRNA abolishes the hypoxic ROS formation in isolated PASM complex III, mitochondria, and cells, whereas Rieske iron-sulfur protein overexpression produces the opposite effect. Rieske iron-sulfur protein silencing inhibits the hypoxic increase in [Ca(2+)](i) in PASMCs and hypoxic vasoconstriction in isolated PAs. These findings together provide novel evidence that mitochondria are the direct hypoxic targets in PASMCs, in which Rieske iron-sulfur protein in complex III may serve as an essential, primary molecule that mediates the hypoxic ROS generation, leading to an increase in intracellular Ca(2+) in PASMCs and HPV.


Asunto(s)
Complejo III de Transporte de Electrones/fisiología , Mitocondrias/metabolismo , Arteria Pulmonar/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Secuencia de Bases , Western Blotting , Células Cultivadas , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Silenciador del Gen , Ratones , Arteria Pulmonar/citología , ARN Interferente Pequeño
11.
Antioxid Redox Signal ; 14(1): 37-47, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20518593

RESUMEN

Here we attempted to test a novel hypothesis that hypoxia may induce Ca(2+) release through reactive oxygen species (ROS)-mediated dissociation of FK506-binding protein 12.6 (FKBP12.6) from ryanodine receptors (RyRs) on the sarcoplasmic reticulum (SR) in pulmonary artery smooth muscle cells (PASMCs). The results reveal that hypoxic exposure significantly decreased the amount of FKBP12.6 on the SR of PAs and increased FKBP12.6 in the cytosol. The colocalization of FKBP12.6 with RyRs was decreased in intact PASMCs. Pharmacological and genetic inhibition of intracellular ROS generation prevented hypoxia from decreasing FKBP12.6 on the SR and increasing FKBP12.6 in the cytosol. Exogenous ROS (H(2)O(2)) reduced FKBP12.6 on the SR and augmented FKBP12.6 in the cytosol. Oxidized FKBP12.6 was absent on the SR from PAs pretreated with and without hypoxia, but it was present with a higher amount in the cytosol from PAs pretreated with than without hypoxia. Hypoxia and H(2)O(2) diminished the association of FKBP12.6 from type 2 RyRs (RyR2). The activity of RyRs was increased in PAs pretreated with hypoxia or H(2)O(2). FKBP12.6 removal enhanced, whereas RyR2 gene deletion blocked the hypoxic increase in [Ca(2+)](i) in PASMCs. Collectively, we conclude that hypoxia may induce Ca(2+) release by causing ROS-mediated dissociation of FKBP12.6 from RyR2 in PASMCs.


Asunto(s)
Calcio/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/citología , Especies Reactivas de Oxígeno/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Hipoxia de la Célula/fisiología , Ratones
12.
J Neurochem ; 94(6): 1676-84, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16045446

RESUMEN

Ischemic stroke is caused by acute neuronal degeneration provoked by interruption of cerebral blood flow. Although the mechanisms contributing to ischemic neuronal degeneration are myriad, mitochondrial dysfunction is now recognized as a pivotal event that can lead to either necrotic or apoptotic neuronal death. Lack of suitable 'upstream' targets to prevent loss of mitochondrial homeostasis has, so far, restricted the development of mechanistically based interventions to promote neuronal survival. Here, we show that the uncoupling agent 2,4 dinitrophenol (DNP) reduces infarct volume approximately 40% in a model of focal ischemia-reperfusion injury in the rat brain. The mechanism of protection involves an early decrease in mitochondrial reactive oxygen species formation and calcium uptake leading to improved mitochondrial function and a reduction in the release of cytochrome c into the cytoplasm. The observed effects of DNP were not associated with enhanced cerebral perfusion. These findings indicate that compounds with uncoupling properties may confer neuroprotection through a mechanism involving stabilization of mitochondrial function.


Asunto(s)
2,4-Dinitrofenol/farmacología , Infarto Cerebral/tratamiento farmacológico , Ataque Isquémico Transitorio/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Degeneración Nerviosa/tratamiento farmacológico , Neuronas/efectos de los fármacos , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Infarto Cerebral/fisiopatología , Infarto Cerebral/prevención & control , Citocromos c/metabolismo , Citoprotección/efectos de los fármacos , Citoprotección/fisiología , Modelos Animales de Enfermedad , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Ataque Isquémico Transitorio/metabolismo , Ataque Isquémico Transitorio/fisiopatología , Masculino , Mitocondrias/metabolismo , Degeneración Nerviosa/fisiopatología , Degeneración Nerviosa/prevención & control , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Desacopladores/farmacología
13.
J Neurochem ; 91(2): 257-62, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15447659

RESUMEN

Mitochondrial dysfunction, resulting from the disruption of calcium homeostasis and the generation of toxic reactive oxygen species, is a central process leading to neuronal injury and death following acute CNS insults. Interventions aimed at preventing disturbances in mitochondrial function have therefore become targets of intense investigation. Mitochondrial uncoupling is a condition in which electron transport is disconnected from the production of ATP. As a consequence, there is a decrease in the mitochondrial membrane potential, which can temporarily decrease calcium influx and attenuate free radical formation. The potential use of pharmacological agents with uncoupling properties may provide a novel therapeutic approach for the treatment of acute neuronal injury.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Accidente Cerebrovascular/tratamiento farmacológico , Desacopladores/farmacología , Enfermedad Aguda , Animales , Supervivencia Celular/efectos de los fármacos , Humanos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA