Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 144(12): 3597-3610, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34415310

RESUMEN

Phosphatidylinositol 4-kinase IIIα (PI4KIIIα/PI4KA/OMIM:600286) is a lipid kinase generating phosphatidylinositol 4-phosphate (PI4P), a membrane phospholipid with critical roles in the physiology of multiple cell types. PI4KIIIα's role in PI4P generation requires its assembly into a heterotetrameric complex with EFR3, TTC7 and FAM126. Sequence alterations in two of these molecular partners, TTC7 (encoded by TTC7A or TCC7B) and FAM126, have been associated with a heterogeneous group of either neurological (FAM126A) or intestinal and immunological (TTC7A) conditions. Here we show that biallelic PI4KA sequence alterations in humans are associated with neurological disease, in particular hypomyelinating leukodystrophy. In addition, affected individuals may present with inflammatory bowel disease, multiple intestinal atresia and combined immunodeficiency. Our cellular, biochemical and structural modelling studies indicate that PI4KA-associated phenotypical outcomes probably stem from impairment of PI4KIIIα-TTC7-FAM126's organ-specific functions, due to defective catalytic activity or altered intra-complex functional interactions. Together, these data define PI4KA gene alteration as a cause of a variable phenotypical spectrum and provide fundamental new insight into the combinatorial biology of the PI4KIIIα-FAM126-TTC7-EFR3 molecular complex.


Asunto(s)
Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Atresia Intestinal/genética , Antígenos de Histocompatibilidad Menor/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Enfermedades de Inmunodeficiencia Primaria/genética , Femenino , Humanos , Masculino , Linaje , Polimorfismo de Nucleótido Simple
2.
J Hum Genet ; 66(12): 1159-1167, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34211111

RESUMEN

Heterotopia is a brain malformation caused by a failed migration of cortical neurons during development. Clinical symptoms of heterotopia vary in severity of intellectual disability and may be associated with epileptic disorders. Abnormal neuronal migration is known to be associated with mutations in the doublecortin gene (DCX), the platelet-activating factor acetylhydrolase gene (PAFAH1B1), or tubulin alpha-1A gene (TUBA1A). Recently, a new gene encoding echinoderm microtubule-associated protein-like 1 (EML1) was reported to cause a particular form of subcortical heterotopia, the ribbon-like subcortical heterotopia (RSH). EML1 mutations are inherited in an autosomal recessive manner. Only six unrelated EML1-associated heterotopia-affected families were reported so far. The EML1 protein is a member of the microtubule-associated proteins family, playing an important role in microtubule assembly and stabilization as well as in mitotic spindle formation in interphase. Herein, we present a novel homozygous missense variant in EML1 (NM_004434.2: c.692G>A, NP_004425.2: p.Gly231Asp) identified in a male RSH-affected patient. Our clinical and molecular findings confirm the genotype-phenotype associations of EML1 mutations and RSH. Analyses of patient-derived fibroblasts showed the significantly reduced length of primary cilia. In addition, our results presented, that the mutated EML1 protein did not change binding capacities with tubulin. The data described herein will expand the mutation spectrum of the EML1 gene and provide further insight into molecular and cellular bases of the pathogenic mechanisms underlying RSH.


Asunto(s)
Cilios/metabolismo , Predisposición Genética a la Enfermedad , Malformaciones del Desarrollo Cortical/diagnóstico , Malformaciones del Desarrollo Cortical/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación Missense , Fenotipo , Alelos , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Niño , Consanguinidad , Análisis Mutacional de ADN , Fibroblastos/metabolismo , Estudios de Asociación Genética/métodos , Homocigoto , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Linaje , Conformación Proteica , Relación Estructura-Actividad , Secuenciación del Exoma
3.
Neuropediatrics ; 52(6): 489-494, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33853163

RESUMEN

The enzyme ubiquitin-like modifier activating enzyme 5 (UBA5) plays an important role in activating ubiquitin-fold modifier 1 (UFM1) and its associated cascade. UFM1 is widely expressed and known to facilitate the post-translational modification of proteins. Variants in UBA5 and UFM1 are involved in neurodevelopmental disorders with early-onset epileptic encephalopathy as a frequently seen disease manifestation. Using whole exome sequencing, we detected a homozygous UBA5 variant (c.895C > T p. [Pro299Ser]) in a patient with severe global developmental delay and epilepsy, the latter from the age of 4 years. Magnetic resonance imaging showed hypomyelination with atrophy and T2 hyperintensity of the thalamus. Histology of the sural nerve showed axonal neuropathy with decreased myelin. Functional analyses confirmed the effect of the Pro299Ser variant on UBA5 protein function, showing 58% residual protein activity. Our findings indicate that the epilepsy currently associated with UBA5 variants may present later in life than previously thought, and that radiological signs include hypomyelination and thalamic involvement. The data also reinforce recently reported associations between UBA5 variants and peripheral neuropathy.


Asunto(s)
Epilepsia , Enfermedades del Sistema Nervioso Periférico , Preescolar , Homocigoto , Humanos , Tálamo/diagnóstico por imagen , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo
4.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802230

RESUMEN

Pathogenic variants in KCNA2, encoding for the voltage-gated potassium channel Kv1.2, have been identified as the cause for an evolving spectrum of neurological disorders. Affected individuals show early-onset developmental and epileptic encephalopathy, intellectual disability, and movement disorders resulting from cerebellar dysfunction. In addition, individuals with a milder course of epilepsy, complicated hereditary spastic paraplegia, and episodic ataxia have been reported. By analyzing phenotypic, functional, and genetic data from published reports and novel cases, we refine and further delineate phenotypic as well as functional subgroups of KCNA2-associated disorders. Carriers of variants, leading to complex and mixed channel dysfunction that are associated with a gain- and loss-of-potassium conductance, more often show early developmental abnormalities and an earlier onset of epilepsy compared to individuals with variants resulting in loss- or gain-of-function. We describe seven additional individuals harboring three known and the novel KCNA2 variants p.(Pro407Ala) and p.(Tyr417Cys). The location of variants reported here highlights the importance of the proline(405)-valine(406)-proline(407) (PVP) motif in transmembrane domain S6 as a mutational hotspot. A novel case of self-limited infantile seizures suggests a continuous clinical spectrum of KCNA2-related disorders. Our study provides further insights into the clinical spectrum, genotype-phenotype correlation, variability, and predicted functional impact of KCNA2 variants.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genotipo , Canal de Potasio Kv.1.2 , Mutación Missense , Enfermedades del Sistema Nervioso , Sustitución de Aminoácidos , Femenino , Humanos , Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv.1.2/metabolismo , Masculino , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo
5.
Am J Hum Genet ; 101(2): 283-290, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28757203

RESUMEN

Lipoate serves as a cofactor for the glycine cleavage system (GCS) and four 2-oxoacid dehydrogenases functioning in energy metabolism (α-oxoglutarate dehydrogenase [α-KGDHc] and pyruvate dehydrogenase [PDHc]), or amino acid metabolism (branched-chain oxoacid dehydrogenase, 2-oxoadipate dehydrogenase). Mitochondrial lipoate synthesis involves three enzymatic steps catalyzed sequentially by lipoyl(octanoyl) transferase 2 (LIPT2), lipoic acid synthetase (LIAS), and lipoyltransferase 1 (LIPT1). Mutations in LIAS have been associated with nonketotic hyperglycinemia-like early-onset convulsions and encephalopathy combined with a defect in mitochondrial energy metabolism. LIPT1 deficiency spares GCS deficiency and has been associated with a biochemical signature of combined 2-oxoacid dehydrogenase deficiency leading to early death or Leigh-like encephalopathy. We report on the identification of biallelic LIPT2 mutations in three affected individuals from two families with severe neonatal encephalopathy. Brain MRI showed major cortical atrophy with white matter abnormalities and cysts. Plasma glycine was mildly increased. Affected individuals' fibroblasts showed reduced oxygen consumption rates, PDHc, α-KGDHc activities, leucine catabolic flux, and decreased protein lipoylation. A normalization of lipoylation was observed after expression of wild-type LIPT2, arguing for LIPT2 requirement in intramitochondrial lipoate synthesis. Lipoic acid supplementation did not improve clinical condition nor activities of PDHc, α-KGDHc, or leucine metabolism in fibroblasts and was ineffective in yeast deleted for the orthologous LIP2.


Asunto(s)
Aciltransferasas/genética , Atrofia/patología , Encefalopatías/genética , Encéfalo/patología , Lipoilación/genética , Mitocondrias/metabolismo , Aminoácidos/metabolismo , Encéfalo/diagnóstico por imagen , Encefalopatías/patología , Mapeo Encefálico/métodos , Células Cultivadas , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Glicina/sangre , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Mitocondrias/genética , Consumo de Oxígeno/genética , Unión Proteica/genética , Ácido Tióctico/metabolismo
6.
Am J Hum Genet ; 100(2): 216-227, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28065471

RESUMEN

Defects of the V-type proton (H+) ATPase (V-ATPase) impair acidification and intracellular trafficking of membrane-enclosed compartments, including secretory granules, endosomes, and lysosomes. Whole-exome sequencing in five families affected by mild to severe cutis laxa, dysmorphic facial features, and cardiopulmonary involvement identified biallelic missense mutations in ATP6V1E1 and ATP6V1A, which encode the E1 and A subunits, respectively, of the V1 domain of the heteromultimeric V-ATPase complex. Structural modeling indicated that all substitutions affect critical residues and inter- or intrasubunit interactions. Furthermore, complexome profiling, a method combining blue-native gel electrophoresis and liquid chromatography tandem mass spectrometry, showed that they disturb either the assembly or the stability of the V-ATPase complex. Protein glycosylation was variably affected. Abnormal vesicular trafficking was evidenced by delayed retrograde transport after brefeldin A treatment and abnormal swelling and fragmentation of the Golgi apparatus. In addition to showing reduced and fragmented elastic fibers, the histopathological hallmark of cutis laxa, transmission electron microscopy of the dermis also showed pronounced changes in the structure and organization of the collagen fibers. Our findings expand the clinical and molecular spectrum of metabolic cutis laxa syndromes and further link defective extracellular matrix assembly to faulty protein processing and cellular trafficking caused by genetic defects in the V-ATPase complex.


Asunto(s)
Cutis Laxo/genética , Mutación Missense , ATPasas de Translocación de Protón Vacuolares/genética , Adolescente , Alelos , Secuencia de Aminoácidos , Estudios de Casos y Controles , Niño , Femenino , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Glicosilación , Aparato de Golgi/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Linaje , Conformación Proteica , Transporte de Proteínas , Espectrometría de Masas en Tándem
8.
Genet Med ; 20(1): 98-108, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28661489

RESUMEN

PurposeThe study aimed at widening the clinical and genetic spectrum and assessing genotype-phenotype associations in FOXG1 syndrome due to FOXG1 variants.MethodsWe compiled 30 new and 53 reported patients with a heterozygous pathogenic or likely pathogenic variant in FOXG1. We grouped patients according to type and location of the variant. Statistical analysis of molecular and clinical data was performed using Fisher's exact test and a nonparametric multivariate test.ResultsAmong the 30 new patients, we identified 19 novel FOXG1 variants. Among the total group of 83 patients, there were 54 variants: 20 frameshift (37%), 17 missense (31%), 15 nonsense (28%), and 2 in-frame variants (4%). Frameshift and nonsense variants are distributed over all FOXG1 protein domains; missense variants cluster within the conserved forkhead domain. We found a higher phenotypic variability than previously described. Genotype-phenotype association revealed significant differences in psychomotor development and neurological features between FOXG1 genotype groups. More severe phenotypes were associated with truncating FOXG1 variants in the N-terminal domain and the forkhead domain (except conserved site 1) and milder phenotypes with missense variants in the forkhead conserved site 1.ConclusionsThese data may serve for improved interpretation of new FOXG1 sequence variants and well-founded genetic counseling.


Asunto(s)
Factores de Transcripción Forkhead/genética , Estudios de Asociación Genética , Variación Genética , Proteínas del Tejido Nervioso/genética , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Genotipo , Humanos , Imagen por Resonancia Magnética , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple
9.
Brain ; 140(9): 2322-2336, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29050398

RESUMEN

De novo in-frame deletions and duplications in the SPTAN1 gene, encoding the non-erythrocyte αII spectrin, have been associated with severe West syndrome with hypomyelination and pontocerebellar atrophy. We aimed at comprehensively delineating the phenotypic spectrum associated with SPTAN1 mutations. Using different molecular genetic techniques, we identified 20 patients with a pathogenic or likely pathogenic SPTAN1 variant and reviewed their clinical, genetic and imaging data. SPTAN1 de novo alterations included seven unique missense variants and nine in-frame deletions/duplications of which 12 were novel. The recurrent three-amino acid duplication p.(Asp2303_Leu2305dup) occurred in five patients. Our patient cohort exhibited a broad spectrum of neurodevelopmental phenotypes, comprising six patients with mild to moderate intellectual disability, with or without epilepsy and behavioural disorders, and 14 patients with infantile epileptic encephalopathy, of which 13 had severe neurodevelopmental impairment and four died in early childhood. Imaging studies suggested that the severity of neurological impairment and epilepsy correlates with that of structural abnormalities as well as the mutation type and location. Out of seven patients harbouring mutations outside the α/ß spectrin heterodimerization domain, four had normal brain imaging and three exhibited moderately progressive brain and/or cerebellar atrophy. Twelve of 13 patients with mutations located within the spectrin heterodimer contact site exhibited severe and progressive brain, brainstem and cerebellar atrophy, with hypomyelination in most. We used fibroblasts from five patients to study spectrin aggregate formation by Triton-X extraction and immunocytochemistry followed by fluorescence microscopy. αII/ßII aggregates and αII spectrin in the insoluble protein fraction were observed in fibroblasts derived from patients with the mutations p.(Glu2207del), p.(Asp2303_Leu2305dup) and p.(Arg2308_Met2309dup), all falling in the nucleation site of the α/ß spectrin heterodimer region. Molecular modelling of the seven SPTAN1 amino acid changes provided preliminary evidence for structural alterations of the A-, B- and/or C-helices within each of the mutated spectrin repeats. We conclude that SPTAN1-related disorders comprise a wide spectrum of neurodevelopmental phenotypes ranging from mild to severe and progressive. Spectrin aggregate formation in fibroblasts with mutations in the α/ß heterodimerization domain seems to be associated with a severe neurodegenerative course and suggests that the amino acid stretch from Asp2303 to Met2309 in the α20 repeat is important for α/ß spectrin heterodimer formation and/or αII spectrin function.


Asunto(s)
Encefalopatías/genética , Encéfalo/patología , Proteínas Portadoras/genética , Epilepsia/genética , Proteínas de Microfilamentos/genética , Adolescente , Atrofia/complicaciones , Atrofia/patología , Encéfalo/anomalías , Encefalopatías/complicaciones , Proteínas Portadoras/metabolismo , Células Cultivadas , Niño , Preescolar , Progresión de la Enfermedad , Epilepsia/complicaciones , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Proteínas de Microfilamentos/metabolismo , Modelos Moleculares , Mutación , Trastornos del Neurodesarrollo/complicaciones , Trastornos del Neurodesarrollo/genética , Fenotipo , Agregación Patológica de Proteínas/metabolismo , Adulto Joven
10.
J Neurochem ; 143(5): 507-522, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28902413

RESUMEN

Hereditary neuropathies comprise a wide variety of chronic diseases associated to more than 80 genes identified to date. We herein examined 612 index patients with either a Charcot-Marie-Tooth phenotype, hereditary sensory neuropathy, familial amyloid neuropathy, or small fiber neuropathy using a customized multigene panel based on the next generation sequencing technique. In 121 cases (19.8%), we identified at least one putative pathogenic mutation. Of these, 54.4% showed an autosomal dominant, 33.9% an autosomal recessive, and 11.6% an X-linked inheritance. The most frequently affected genes were PMP22 (16.4%), GJB1 (10.7%), MPZ, and SH3TC2 (both 9.9%), and MFN2 (8.3%). We further detected likely or known pathogenic variants in HINT1, HSPB1, NEFL, PRX, IGHMBP2, NDRG1, TTR, EGR2, FIG4, GDAP1, LMNA, LRSAM1, POLG, TRPV4, AARS, BIC2, DHTKD1, FGD4, HK1, INF2, KIF5A, PDK3, REEP1, SBF1, SBF2, SCN9A, and SPTLC2 with a declining frequency. Thirty-four novel variants were considered likely pathogenic not having previously been described in association with any disorder in the literature. In one patient, two homozygous mutations in HK1 were detected in the multigene panel, but not by whole exome sequencing. A novel missense mutation in KIF5A was considered pathogenic because of the highly compatible phenotype. In one patient, the plasma sphingolipid profile could functionally prove the pathogenicity of a mutation in SPTLC2. One pathogenic mutation in MPZ was identified after being previously missed by Sanger sequencing. We conclude that panel based next generation sequencing is a useful, time- and cost-effective approach to assist clinicians in identifying the correct diagnosis and enable causative treatment considerations.


Asunto(s)
Predisposición Genética a la Enfermedad , Neuropatía Hereditaria Motora y Sensorial/genética , Mutación/genética , Enfermedades Raras/genética , Enfermedad de Charcot-Marie-Tooth/genética , Femenino , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico , Neuropatía Hereditaria Motora y Sensorial/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Chaperonas Moleculares , Fenotipo
11.
J Med Genet ; 53(8): 511-22, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26989088

RESUMEN

OBJECTIVE: We aimed to delineate the neurodevelopmental spectrum associated with SYNGAP1 mutations and to investigate genotype-phenotype correlations. METHODS: We sequenced the exome or screened the exons of SYNGAP1 in a total of 251 patients with neurodevelopmental disorders. Molecular and clinical data from patients with SYNGAP1 mutations from other centres were also collected, focusing on developmental aspects and the associated epilepsy phenotype. A review of SYNGAP1 mutations published in the literature was also performed. RESULTS: We describe 17 unrelated affected individuals carrying 13 different novel loss-of-function SYNGAP1 mutations. Developmental delay was the first manifestation of SYNGAP1-related encephalopathy; intellectual disability became progressively obvious and was associated with autistic behaviours in eight patients. Hypotonia and unstable gait were frequent associated neurological features. With the exception of one patient who experienced a single seizure, all patients had epilepsy, characterised by falls or head drops due to atonic or myoclonic seizures, (myoclonic) absences and/or eyelid myoclonia. Triggers of seizures were frequent (n=7). Seizures were pharmacoresistant in half of the patients. The severity of the epilepsy did not correlate with the presence of autistic features or with the severity of cognitive impairment. Mutations were distributed throughout the gene, but spared spliced 3' and 5' exons. Seizures in patients with mutations in exons 4-5 were more pharmacoresponsive than in patients with mutations in exons 8-15. CONCLUSIONS: SYNGAP1 encephalopathy is characterised by early neurodevelopmental delay typically preceding the onset of a relatively recognisable epilepsy comprising generalised seizures (absences, myoclonic jerks) and frequent triggers.

12.
PLoS Genet ; 10(4): e1004267, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699222

RESUMEN

Intellectual disability and seizures are frequently associated with hypomagnesemia and have an important genetic component. However, to find the genetic origin of intellectual disability and seizures often remains challenging because of considerable genetic heterogeneity and clinical variability. In this study, we have identified new mutations in CNNM2 in five families suffering from mental retardation, seizures, and hypomagnesemia. For the first time, a recessive mode of inheritance of CNNM2 mutations was observed. Importantly, patients with recessive CNNM2 mutations suffer from brain malformations and severe intellectual disability. Additionally, three patients with moderate mental disability were shown to carry de novo heterozygous missense mutations in the CNNM2 gene. To elucidate the physiological role of CNNM2 and explain the pathomechanisms of disease, we studied CNNM2 function combining in vitro activity assays and the zebrafish knockdown model system. Using stable Mg(2+) isotopes, we demonstrated that CNNM2 increases cellular Mg2+ uptake in HEK293 cells and that this process occurs through regulation of the Mg(2+)-permeable cation channel TRPM7. In contrast, cells expressing mutated CNNM2 proteins did not show increased Mg(2+) uptake. Knockdown of cnnm2 isoforms in zebrafish resulted in disturbed brain development including neurodevelopmental impairments such as increased embryonic spontaneous contractions and weak touch-evoked escape behaviour, and reduced body Mg content, indicative of impaired renal Mg(2+) absorption. These phenotypes were rescued by injection of mammalian wild-type Cnnm2 cRNA, whereas mammalian mutant Cnnm2 cRNA did not improve the zebrafish knockdown phenotypes. We therefore concluded that CNNM2 is fundamental for brain development, neurological functioning and Mg(2+) homeostasis. By establishing the loss-of-function zebrafish model for CNNM2 genetic disease, we provide a unique system for testing therapeutic drugs targeting CNNM2 and for monitoring their effects on the brain and kidney phenotype.


Asunto(s)
Encéfalo/metabolismo , Ciclinas/genética , Discapacidad Intelectual/genética , Magnesio/metabolismo , Mutación Missense/genética , Convulsiones/genética , Adolescente , Animales , Proteínas de Transporte de Catión , Línea Celular , Femenino , Células HEK293 , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/metabolismo , Riñón/metabolismo , Masculino , Fenotipo , Convulsiones/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
13.
Am J Hum Genet ; 88(5): 657-63, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21549339

RESUMEN

The progressive myoclonus epilepsies (PMEs) are a group of predominantly recessive disorders that present with action myoclonus, tonic-clonic seizures, and progressive neurological decline. Many PMEs have similar clinical presentations yet are genetically heterogeneous, making accurate diagnosis difficult. A locus for PME was mapped in a consanguineous family with a single affected individual to chromosome 17q21. An identical-by-descent, homozygous mutation in GOSR2 (c.430G>T, p.Gly144Trp), a Golgi vesicle transport gene, was identified in this patient and in four apparently unrelated individuals. A comparison of the phenotypes in these patients defined a clinically distinct PME syndrome characterized by early-onset ataxia, action myoclonus by age 6, scoliosis, and mildly elevated serum creatine kinase. This p.Gly144Trp mutation is equivalent to a loss of function and results in failure of GOSR2 protein to localize to the cis-Golgi.


Asunto(s)
Mutación , Epilepsias Mioclónicas Progresivas/genética , Proteínas Qb-SNARE/genética , Degeneraciones Espinocerebelosas/genética , Secuencia de Aminoácidos , Niño , Consanguinidad , Femenino , Genes Recesivos , Marcadores Genéticos , Aparato de Golgi/genética , Homocigoto , Humanos , Escala de Lod , Masculino , Datos de Secuencia Molecular , Epilepsias Mioclónicas Progresivas/patología , Linaje , Fenotipo , Proteínas SNARE/genética , Degeneraciones Espinocerebelosas/patología
14.
Mol Genet Metab ; 111(1): 16-25, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24268530

RESUMEN

We collected data on 48 patients from 38 families with guanidinoacetate methyltransferase (GAMT) deficiency. Global developmental delay/intellectual disability (DD/ID) with speech/language delay and behavioral problems as the most affected domains was present in 44 participants, with additional epilepsy present in 35 and movement disorder in 13. Treatment regimens included various combinations/dosages of creatine-monohydrate, l-ornithine, sodium benzoate and protein/arginine restricted diets. The median age at treatment initiation was 25.5 and 39 months in patients with mild and moderate DD/ID, respectively, and 11 years in patients with severe DD/ID. Increase of cerebral creatine and decrease of plasma/CSF guanidinoacetate levels were achieved by supplementation with creatine-monohydrate combined with high dosages of l-ornithine and/or an arginine-restricted diet (250 mg/kg/d l-arginine). Therapy was associated with improvement or stabilization of symptoms in all of the symptomatic cases. The 4 patients treated younger than 9 months had normal or almost normal developmental outcomes. One with inconsistent compliance had a borderline IQ at age 8.6 years. An observational GAMT database will be essential to identify the best treatment to reduce plasma guanidinoacetate levels and improve long-term outcomes.


Asunto(s)
Arginina/metabolismo , Arginina/uso terapéutico , Creatina/metabolismo , Creatina/uso terapéutico , Glicina/análogos & derivados , Guanidinoacetato N-Metiltransferasa/deficiencia , Discapacidad Intelectual/terapia , Trastornos del Desarrollo del Lenguaje/terapia , Trastornos del Movimiento/congénito , Ornitina/uso terapéutico , Benzoato de Sodio/uso terapéutico , Adolescente , Adulto , Encéfalo/metabolismo , Niño , Preescolar , Terapia Combinada , Femenino , Glicina/sangre , Glicina/líquido cefalorraquídeo , Guanidinoacetato N-Metiltransferasa/metabolismo , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/metabolismo , Trastornos del Desarrollo del Lenguaje/diagnóstico , Trastornos del Desarrollo del Lenguaje/metabolismo , Masculino , Persona de Mediana Edad , Trastornos del Movimiento/diagnóstico , Trastornos del Movimiento/metabolismo , Trastornos del Movimiento/terapia , Guías de Práctica Clínica como Asunto , Resultado del Tratamiento , Adulto Joven
15.
Brain ; 136(Pt 4): 1146-54, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23449775

RESUMEN

We previously identified a homozygous mutation in the Golgi SNAP receptor complex 2 gene (GOSR2) in six patients with progressive myoclonus epilepsy. To define the syndrome better we analysed the clinical and electrophysiological phenotype in 12 patients with GOSR2 mutations, including six new unrelated subjects. Clinical presentation was remarkably similar with early onset ataxia (average 2 years of age), followed by myoclonic seizures at the average age of 6.5 years. Patients developed multiple seizure types, including generalized tonic clonic seizures, absence seizures and drop attacks. All patients developed scoliosis by adolescence, making this an important diagnostic clue. Additional skeletal deformities were present, including pes cavus in four patients and syndactyly in two patients. All patients had elevated serum creatine kinase levels (median 734 IU) in the context of normal muscle biopsies. Electroencephalography revealed pronounced generalized spike and wave discharges with a posterior predominance and photosensitivity in all patients, with focal EEG features seen in seven patients. The disease course showed a relentless decline; patients uniformly became wheelchair bound (mean age 13 years) and four had died during their third or early fourth decade. All 12 cases had the same variant (c.430G>T, G144W) and haplotype analyses confirmed a founder effect. The cases all came from countries bounding the North Sea, extending to the coastal region of Northern Norway. 'North Sea' progressive myoclonus epilepsy has a homogeneous clinical presentation and relentless disease course allowing ready identification from the other progressive myoclonus epilepsies.


Asunto(s)
Mutación , Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas Progresivas/fisiopatología , Fenotipo , Proteínas Qb-SNARE/genética , Adolescente , Adulto , Ataxia/genética , Ataxia/fisiopatología , Niño , Electroencefalografía , Europa (Continente) , Femenino , Humanos , Masculino , Mutación/genética , Epilepsias Mioclónicas Progresivas/mortalidad , Mar del Norte , Adulto Joven
16.
J Med Genet ; 50(8): 521-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23636107

RESUMEN

PURPOSE: To delineate the molecular basis for a novel autosomal recessive syndrome, characterised by distinct facial features, intellectual disability, hypotonia and seizures, in combination with abnormal skeletal, endocrine, and ophthalmologic findings. METHODS: We examined four patients from a consanguineous kindred with a strikingly similar phenotype, by using whole exome sequencing (WES). Functional validation of the initial results were performed by flow cytometry determining surface expression of glycosylphosphatidylinositol (GPI) and GPI anchored proteins and, in addition, by in vivo assays on zebrafish embryos. RESULTS: The results from WES identified a homozygous mutation, c.547A>C (p.Thr183Pro), in PIGT; Sanger sequencing of additional family members confirmed segregation with the disease. PIGT encodes phosphatidylinositol-glycan biosynthesis class T (PIG-T) protein, which is a subunit of the transamidase complex that catalyses the attachment of proteins to GPI. By flow cytometry, we found that granulocytes from the patients had reduced levels of the GPI anchored protein CD16b, supporting pathogenicity of the mutation. Further functional in vivo validation via morpholino mediated knockdown of the PIGT ortholog in zebrafish (pigt) showed that, unlike human wild-type PIGT mRNA, the p.Thr183Pro encoding mRNA failed to rescue gastrulation defects induced by the suppression of pigt. CONCLUSIONS: We identified mutations in PIGT as the cause of a novel autosomal recessive intellectual disability syndrome. Our results demonstrate a new pathogenic mechanism in the GPI anchor pathway and expand the clinical spectrum of disorders belonging to the group of GPI anchor deficiencies.


Asunto(s)
Glicosilfosfatidilinositoles/deficiencia , Glicosilfosfatidilinositoles/genética , Hemoglobinuria Paroxística/genética , Discapacidad Intelectual/genética , Hipotonía Muscular/genética , Convulsiones/genética , Animales , Animales Modificados Genéticamente , Preescolar , Consanguinidad , Embrión no Mamífero/metabolismo , Femenino , Citometría de Flujo , Homocigoto , Humanos , Mutación , Linaje , Síndrome , Pez Cebra/genética , Pez Cebra/metabolismo
17.
medRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352438

RESUMEN

Developmental and epileptic encephalopathies (DEEs) are a heterogenous group of epilepsies in which altered brain development leads to developmental delay and seizures, with the epileptic activity further negatively impacting neurodevelopment. Identifying the underlying cause of DEEs is essential for progress toward precision therapies. Here we describe a group of individuals with biallelic variants in DENND5A and determine that variant type is correlated with disease severity. We demonstrate that DENND5A interacts with MUPP1 and PALS1, components of the Crumbs apical polarity complex, which is required for both neural progenitor cell identity and the ability of these stem cells to divide symmetrically. Induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division during neural induction and have an inherent propensity to differentiate into neurons, and transgenic DENND5A mice, with phenotypes like the human syndrome, have an increased number of neurons in the adult subventricular zone. Disruption of symmetric cell division following loss of DENND5A results from misalignment of the mitotic spindle in apical neural progenitors. A subset of DENND5A is localized to centrosomes, which define the spindle poles during mitosis. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state and ultimately shortening the period of neurogenesis. This study provides a mechanism behind DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.

18.
HGG Adv ; 5(2): 100273, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38297832

RESUMEN

Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 14 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism, reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated an overall milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, and some had alternative symptomatologies with rational biological links to SMC3. Analyses of tumor and model system transcriptomic data and epigenetic data in a subset of cases suggest that SMC3 pLoF variants reduce SMC3 expression but do not strongly support clustering with functional genomic signatures of typical CdLS. Our finding of substantial population-scale LoF intolerance in concert with variable growth and developmental features in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multilayered genomic data paired with careful phenotyping.


Asunto(s)
Síndrome de Cornelia de Lange , Discapacidad Intelectual , Humanos , Proteínas de Ciclo Celular/genética , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteínas Cromosómicas no Histona/genética , Síndrome de Cornelia de Lange/genética , Heterocigoto , Discapacidad Intelectual/genética , Mutación , Fenotipo
19.
Blood Adv ; 7(8): 1531-1535, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36206192

RESUMEN

Most hereditary forms of hemophagocytic lymphohistiocytosis (HLH) are caused by defects of cytotoxicity, including the vesicle trafficking disorder Griscelli syndrome type 2 (GS2, RAB27A deficiency). Deficiency of the mitogen-activated protein kinase activating death domain protein (MADD) results in a protean syndrome with neurological and endocrinological involvement. MADD acts as a guanine nucleotide exchange factor for small guanosine triphosphatases, including RAB27A. A homozygous splice site mutation in MADD was identified in a female infant with syndromic features, secretory diarrhea, and features of HLH. Aberrant splicing caused by this mutation leads to an in-frame deletion of 30 base pairs and favors other aberrant variants. Patient natural killer (NK) cells and cytotoxic T cells showed a severe degranulation defect leading to absent perforin-mediated cytotoxicity. Platelets displayed defective adenosine triphosphate secretion, similar to that in GS2. To prove causality, we introduced a CRISPR/Cas9-based MADD knockout in the NK cell line NK-92mi. MADD-deficient NK-92mi cells showed a degranulation defect and impaired cytotoxicity similar to that of the patient. The defect of cytotoxicity was confirmed in another patient with MADD deficiency. In conclusion, RAB27A-interacting MADD is involved in vesicle release by cytotoxic cells and platelets. MADD deficiency causes a degranulation defect and represents a novel disease predisposing to an HLH phenotype.


Asunto(s)
Citotoxicidad Inmunológica , Enfermedades de Inmunodeficiencia Primaria , Femenino , Humanos , Dominio de Muerte , Células Asesinas Naturales/metabolismo , Linfocitos T Citotóxicos/metabolismo , Enfermedades de Inmunodeficiencia Primaria/metabolismo
20.
Genes (Basel) ; 14(4)2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-37107582

RESUMEN

Biallelic variants in the mitochondrial form of the tryptophanyl-tRNA synthetases (WARS2) can cause a neurodevelopmental disorder with movement disorders including early-onset tremor-parkinsonism syndrome. Here, we describe four new patients, who all presented at a young age with a tremor-parkinsonism syndrome and responded well to levodopa. All patients carry the same recurrent, hypomorphic missense variant (NM_015836.4: c.37T>G; p.Trp13Gly) either together with a previously described truncating variant (NM_015836.4: c.797Cdel; p.Pro266ArgfsTer10), a novel truncating variant (NM_015836.4: c.346C>T; p.Gln116Ter), a novel canonical splice site variant (NM_015836.4: c.349-1G>A), or a novel missense variant (NM_015836.4: c.475A>C, p.Thr159Pro). We investigated the mitochondrial function in patients and found increased levels of mitochondrially encoded cytochrome C Oxidase II as part of the mitochondrial respiratory chain as well as decreased mitochondrial integrity and branching. Finally, we conducted a literature review and here summarize the broad phenotypical spectrum of reported WARS2-related disorders. In conclusion, WARS2-related disorders are diagnostically challenging diseases due to the broad phenotypic spectrum and the disease relevance of a relatively common missense change that is often filtered out in a diagnostic setting since it occurs in ~0.5% of the general European population.


Asunto(s)
Trastornos Parkinsonianos , Triptófano-ARNt Ligasa , Humanos , Temblor , Mitocondrias/genética , Mutación Missense
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA