Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 14(34): e1801599, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30035854

RESUMEN

Nanoactuators are a key component for developing nanomachinery. Here, an electrically driven device yielding actuation stresses exceeding 1 MPa withintegrated optical readout is demonstrated. 10 nm thick Al2 O3 electrolyte films are sandwiched between graphene and Au electrodes. These allow reversible room-temperature solid-state redox reactions, producing Al metal and O2 gas in a memristive-type switching device. The resulting high-pressure oxygen micro-fuel reservoirs are encapsulated under the graphene, swelling to heights of up to 1 µm, which can be dynamically tracked by plasmonic rulers. Unlike standard memristors where the memristive redox reaction occurs in single or few conductive filaments, the mechanical deformation forces the creation of new filaments over the whole area of the inflated film. The resulting on-off resistance ratios reach 108 in some cycles. The synchronization of nanoactuation and memristive switching in these devices is compatible with large-scale fabrication and has potential for precise and electrically monitored actuation technology.

2.
ACS Nano ; 18(4): 3323-3330, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38215048

RESUMEN

Integrating cavity-enhanced colloidal quantum dots (QDs) into photonic chip devices would be transformative for advancing room-temperature optoelectronic and quantum photonic technologies. However, issues with efficiency, stability, and cost remain formidable challenges to reach the single antenna limit. Here, we present a bottom-up approach that delivers single QD-plasmonic nanoantennas with electrical addressability. These QD nanojunctions exhibit robust photoresponse characteristics, with plasmonically enhanced photocurrent spectra matching the QD solution absorption. We demonstrate electroluminescence from individual plasmonic nanoantennas, extending the device lifetime beyond 40 min by utilizing a 3 nm electron-blocking polymer layer. In addition, we reveal a giant voltage-dependent redshift of up to 62 meV due to the quantum-confined Stark effect and determine the exciton polarizability of the CdSe QD monolayer to be 4 × 10-5 meV/(kV/cm)2. These developments provide a foundation for accessing scalable quantum light sources and high-speed, tunable optoelectronic systems operating under ambient conditions.

3.
ACS Photonics ; 10(2): 493-499, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36820326

RESUMEN

Plasmonic nanoantennas can focus light at nanometer length scales providing intense field enhancements. For the tightest optical confinements (0.5-5 nm) achieved in plasmonic gaps, the gap spacing, refractive index, and facet width play a dominant role in determining the optical properties making tuning through antenna shape challenging. We show here that controlling the surrounding refractive index instead allows both efficient frequency tuning and enhanced in-/output coupling through retardation matching as this allows dark modes to become optically active, improving widespread functionalities.

4.
ACS Nano ; 15(9): 14535-14543, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34436876

RESUMEN

Molecular junctions offer the opportunity for downscaling optoelectronic devices. Separating two electrodes with a single layer of molecules accesses the quantum-tunneling regime at low voltages (<1 V), where tunneling currents become highly sensitive to local nanometer-scale geometric features of the electrodes. These features generate asymmetries in the electrical response of the junction which combine with the incident oscillating optical fields to produce optical rectification and photocurrents. Maximizing photocurrents requires accurate control of the overall junction geometry and a large confined optical field in the optimal location. Plasmonic nanostructures such as metallic nanoparticles are prime candidates for this application, because their size and shape dictate a consistent junction geometry while strongly enhancing the optical field from incident light. Here we demonstrate a robust lithography-free molecular optoelectronic device geometry, where a metallic nanoparticle on a self-assembled molecular monolayer is sandwiched between planar bottom and semitransparent top electrodes, to create molecular junctions with reproducible morphology and electrical response. The well-defined geometry enables predictable and intense plasmonic localization, which we show creates optical-frequency voltages ∼ 30 mV in the molecular junction from 100 µW incident light, generating photocurrent by optical rectification (>10 µA/W) from only a few hundred molecules. Quantitative agreement is thus obtained between DC- and optical-frequency quantum-tunneling currents, predicted by a simple analytic equation. By measuring the degree of junction asymmetry for different molecular monolayers, we find that molecules with a large DC rectification ratio also boost zero-bias electrical asymmetry, making them good candidates for sensing and energy harvesting applications in combination with plasmonic nanomaterials.

5.
Nat Commun ; 11(1): 5905, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33219231

RESUMEN

Molecular electronics promises a new generation of ultralow-energy information technologies, based around functional molecular junctions. Here, we report optical probing that exploits a gold nanoparticle in a plasmonic nanocavity geometry used as one terminal of a well-defined molecular junction, deposited as a self-assembled molecular monolayer on flat gold. A conductive transparent cantilever electrically contacts individual nanoparticles while maintaining optical access to the molecular junction. Optical readout of molecular structure in the junction reveals ultralow-energy switching of ∼50 zJ, from a nano-electromechanical torsion spring at the single molecule level. Real-time Raman measurements show these electronic device characteristics are directly affected by this molecular torsion, which can be explained using a simple circuit model based on junction capacitances, confirmed by density functional theory calculations. This nanomechanical degree of freedom is normally invisible and ignored in electrical transport measurements but is vital to the design and exploitation of molecules as quantum-coherent electronic nanodevices.

6.
Nat Commun ; 10(1): 1049, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837456

RESUMEN

Interactions between a single emitter and cavity provide the archetypical system for fundamental quantum electrodynamics. Here we show that a single molecule of Atto647 aligned using DNA origami interacts coherently with a sub-wavelength plasmonic nanocavity, approaching the cooperative regime even at room temperature. Power-dependent pulsed excitation reveals Rabi oscillations, arising from the coupling of the oscillating electric field between the ground and excited states. The observed single-molecule fluorescent emission is split into two modes resulting from anti-crossing with the plasmonic mode, indicating the molecule is strongly coupled to the cavity. The second-order correlation function of the photon emission statistics is found to be pump wavelength dependent, varying from g(2)(0) = 0.4 to 1.45, highlighting the influence of vibrational relaxation on the Jaynes-Cummings ladder. Our results show that cavity quantum electrodynamic effects can be observed in molecular systems at ambient conditions, opening significant potential for device applications.

7.
Nat Commun ; 8(1): 1296, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29101317

RESUMEN

Strong coupling of monolayer metal dichalcogenide semiconductors with light offers encouraging prospects for realistic exciton devices at room temperature. However, the nature of this coupling depends extremely sensitively on the optical confinement and the orientation of electronic dipoles and fields. Here, we show how plasmon strong coupling can be achieved in compact, robust, and easily assembled gold nano-gap resonators at room temperature. We prove that strong-coupling is impossible with monolayers due to the large exciton coherence size, but resolve clear anti-crossings for greater than 7 layer devices with Rabi splittings exceeding 135 meV. We show that such structures improve on prospects for nonlinear exciton functionalities by at least 104, while retaining quantum efficiencies above 50%, and demonstrate evidence for superlinear light emission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA