Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(48): 19285-19294, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37939249

RESUMEN

Reverse dosimetry, i.e., calculating the dose of hazardous substances that has been taken up by humans based on measured analyte concentrations in spot urine samples, is critical for risk assessment and requires metabolic and kinetic data. We quantitatively studied the metabolism of seven major neonicotinoid and neonicotinoid-like compounds (NNIs) after single oral doses in male volunteers and determined key kinetic parameters and urinary elimination for NNIs together with their metabolites. Complete and consecutive urine samples were collected over 48 h. All samples were analyzed by tandem mass spectrometry, following liquid or gas chromatographic separation. Single- and group-specific NNI metabolites were quantified, i.e., hydroxylated and N-dealkylated NNIs and NNI-associated carboxylic acids and their glycine derivatives. Large, substance-dependent variations of key toxicokinetic parameters were observed. Mean times of concentration maxima (tmax) in urine varied between 2.0 (imidacloprid) and 25.8 h (N-desmethyl-clothianidin), whereas mean urinary elimination half-times (t1/2) were between 2.5 (acetamiprid) and 49.5 h (sulfoxaflor). Mean 48 h excretion fractions (Fue's) were between 0.03% (2-chloro-1,3-thiazole-5-carboxylic acid glycine) and 84% (clothianidin). In contrast, the interindividual differences of Fue's between the volunteers for each of the NNIs and their metabolites remained low (below a factor of 2 between the maximum and minimum derived Fue with the exception of 6-chloronicotinic acid in the acetamiprid dose study). The obtained quantitative data enabled choosing appropriate biomarkers for exposure assessment and, at the same time, for risk assessment by reverse dosimetry at current environmental exposures, i.e., comparing the calculated doses that have been taken up to currently available acceptable daily intakes of NNIs.


Asunto(s)
Insecticidas , Humanos , Masculino , Neonicotinoides , Tiazoles , Nitrocompuestos , Glicina
2.
Environ Res ; 226: 115609, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870553

RESUMEN

Neonicotinoids and neonicotinoid-like compounds (NNIs) are widely used insecticides and their ubiquitous occurrence in the environment requires methods for exposure assessment in humans. The majority of the NNIs can be divided into 6-chloropyridinyl- and 2-chlorothiazolyl-containing compounds, suggesting the formation of the group-specific metabolites 6-chloronicotinic acid (6-CNA), 2-chloro-1,3-thiazole-5-carboxylic acid (2-CTA), and their respective glycine derivatives (6-CNA-gly, 2-CTA-gly). Here, we developed and validated an analytical method based on gas chromatography coupled to mass spectrometry (GC-MS/MS) to simultaneously analyze these four metabolites in human urine. As analytical standards for the glycine conjugates were not commercially available, we synthesized 6-CNA-gly, 2-CTA-gly, and their 13C2,15N-labeled analogs for internal standardization and quantitation by stable isotope dilution. We also ensured chromatographic separation of 6-CNA and its isomer 2-CNA. Enzymatic cleavage during sample preparation was proven unnecessary. The limits of quantitation were between 0.1 (6-CNA) and 0.4 µg/L (2-CTA-gly) and the repeatability was satisfactory (coefficient of variation was <19% over the calibration range). We analyzed 38 spot urine samples from the general population and were able to quantify 6-CNA-gly in 58% of the samples (median 0.2 µg/L). In contrast, no 6-CNA could be detected. The results are in line with well-known metabolic pathways specific in humans, that, compared to rodents, favor the formation and excretion of phase-II-metabolites (glycine derivatives) rather than phase-I metabolites (free carboxylic acids). Nevertheless, the exact source of exposure (i.e., the specific NNI) remains elusive in the general population, may even vary quantitatively between different NNIs, and also might be regional specific based on the respective use of individual NNIs. In sum, we developed a robust and sensitive analytical method for the determination of four group-specific NNI metabolites.


Asunto(s)
Insecticidas , Espectrometría de Masas en Tándem , Humanos , Neonicotinoides , Espectrometría de Masas en Tándem/métodos , Ácidos Carboxílicos , Glicina , Insecticidas/orina
3.
Arch Toxicol ; 95(3): 925-934, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33475793

RESUMEN

Hyperbaric 2% prilocaine is increasingly used for spinal anesthesia. It is the only local anesthetic metabolized to o-toluidine, a human bladder carcinogen. Increase of o-toluidine hemoglobin adducts, a marker of o-toluidine ability to modify the DNA structure, was described following subcutaneous injection. In this prospective cohort study we aimed to assess and quantify o-toluidine hemoglobin adducts and urinary o-toluidine after a single intrathecal dose of hyperbaric prilocaine.10 patients undergoing surgery received 50 mg of hyperbaric prilocaine intrathecally. Blood and urine samples were collected before injection and up to 24 h later (Hospital Braine l'Alleud-Waterloo, Braine l'Alleud, Belgium). Urinary o-toluidine and o-toluidine hemoglobin adducts were measured by tandem mass-spectrometry after gas-chromatographic separation (Institute of the Ruhr-Universität, Bochum Germany). The trial was registered to ClinicalTrials.gov (NCT03642301; 22-08-2018)Intrathecal administration of 50 mg of hyperbaric prilocaine leads to a significant increase of o-toluidine hemoglobin adducts (0.1 ± 0.02-11.9 ± 1.9 ng/g Hb after 24 h, p = 0.001). Peak of urinary o-toluidine was observed after 8 h (0.1 ± 0.1-460.5 ± 352.8 µg/L, p = 0.001) and declined to 98 ± 66.8 µg/L after 24 h (mean ± SD)Single intrathecal administration of hyperbaric prilocaine leads to a systemic burden with o-toluidine and o-toluidine hemoglobin adducts. O-toluidine-induced modifications of DNA should be examined and intrathecal hyperbaric prilocaine should not be proposed to patients chronically exposed to o-toluidine.Clinical trial number and registry URL NCT03642301.


Asunto(s)
Anestésicos Locales/farmacocinética , Prilocaína/farmacocinética , Toluidinas/orina , Anestésicos Locales/administración & dosificación , Estudios de Cohortes , Cromatografía de Gases y Espectrometría de Masas/métodos , Hemoglobinas/metabolismo , Humanos , Inyecciones Espinales , Prilocaína/administración & dosificación , Estudios Prospectivos , Espectrometría de Masas en Tándem/métodos
4.
Arch Toxicol ; 91(11): 3587-3596, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28900691

RESUMEN

N-Phenyl-2-naphthylamine (P2NA) is an antioxidant used to protect rubbers from flex-cracking. P2NA can be converted in vivo to 2NA, one of the most potent bladder carcinogens. Here, we report the specific and ultra-sensitive quantification of P2NA in the receptor fluid of Franz diffusion cells by gas chromatography and isotope-dilution tandem-mass spectroscopy (GC-MS/MS). The experimental conditions were optimized to minimize losses of P2NA due to surface absorption on glass, plastic, and rubber material, and subsequently validated. Static and dynamic diffusion cell conditions were used to study the percutaneous penetration of P2NA into freshly prepared porcine skin. The experimental settings closely resembled those of the printing industry in the 1960s/1970s in Germany where P2NA-containing solutions in dichloromethane have been used. P2NA penetrated the skin at very low levels (0.02 ± 0.01 µg/cm2/h) with a cumulative penetrated amount of 0.80 ± 0.26 µg/cm2, a lag time of 6.33 ± 2.21 h and under dynamic conditions. Compared to the receptor fluid, 10-40-fold higher concentrations were found in the skin, predominantly in the dermis and the stratum corneum. Dichloromethane acted as a penetration enhancer by increasing the cumulative penetrated amounts and the recovery of P2NA in both the receptor fluid and the skin, while shortening its lag time. However, the flux remained unaffected. Due to its accumulation in subcutaneous layers, we finally proved that P2NA is continuously released into the receptor fluid despite exposure cessation up to 160 h. Overall, the results show that close attention has to be paid to dermal absorption of P2NA in exposed workers.


Asunto(s)
2-Naftilamina/análogos & derivados , Cromatografía de Gases y Espectrometría de Masas/métodos , Absorción Cutánea/efectos de los fármacos , Espectrometría de Masas en Tándem/métodos , 2-Naftilamina/análisis , 2-Naftilamina/farmacocinética , 2-Naftilamina/toxicidad , Animales , Alemania , Humanos , Isótopos , Límite de Detección , Cloruro de Metileno/farmacocinética , Exposición Profesional , Reproducibilidad de los Resultados , Porcinos , Lugar de Trabajo
5.
Arch Toxicol ; 91(11): 3597, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29090345

RESUMEN

The article 'Quantification of N-phenyl-2-naphthylamine by gas chromatography and isotope-dilution mass spectrometry and its percutaneous absorption ex vivo under workplace conditions' written by Heiko Udo Käfferlein, was originally published electronically on the publisher's internet portal (currently SpringerLink) on 12th September 2017 without open access.

6.
Arch Toxicol ; 90(6): 1325-33, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26233686

RESUMEN

Aniline is an important source material in the chemical industry (e.g., rubber, pesticides, and pharmaceuticals). The general population is known to be ubiquitously exposed to aniline. Thus, assessment of aniline exposure is of both occupational and environmental relevance. Knowledge on human metabolism of aniline is scarce. We orally dosed four healthy male volunteers (two fast and two slow acetylators) with 5 mg isotope-labeled aniline, consecutively collected all urine samples over a period of 2 days, and investigated the renal excretion of aniline and its metabolites by LS-MS/MS and GC-MS. After enzymatic hydrolysis of glucuronide and sulfate conjugates, N-acetyl-4-aminophenol was the predominant urinary aniline metabolite representing 55.7-68.9 % of the oral dose, followed by the mercapturic acid conjugate of N-acetyl-4-aminophenol accounting for 2.5-6.1 %. Acetanilide and free aniline were found only in minor amounts accounting for 0.14-0.36 % of the dose. Overall, these four biomarkers excreted in urine over 48 h post-dose represented 62.4-72.1 % of the oral aniline dose. Elimination half-times were 3.4-4.3 h for N-acetyl-4-aminophenol, 4.1-5.5 h for the mercapturic acid conjugate, and 1.3-1.6 and 0.6-1.2 h for acetanilide and free aniline, respectively. Urinary maximum concentrations of N-acetyl-4-aminophenol were reached after about 4 h and maximum concentrations of the mercapturic acid conjugate after about 6 h, whereas concentrations of acetanilide and free aniline peaked after about 1 h. The present study is one of the first to provide reliable urinary excretion factors for aniline and its metabolites in humans after oral dosage, including data on the predominant urinary metabolite N-acetyl-4-aminophenol, also known as an analgesic under the name paracetamol/acetaminophen.


Asunto(s)
Compuestos de Anilina/metabolismo , Compuestos de Anilina/orina , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/orina , Administración Oral , Adulto , Compuestos de Anilina/toxicidad , Biotransformación , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Contaminantes Ambientales/toxicidad , Cromatografía de Gases y Espectrometría de Masas , Voluntarios Sanos , Humanos , Masculino , Tasa de Depuración Metabólica , Espectrometría de Masas en Tándem , Toxicocinética
7.
Arch Toxicol ; 88(7): 1419-26, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24899222

RESUMEN

Aniline is an important starting material in the manufacture of polyurethane-based plastic materials. Aniline-derived methemoglobinemia (Met-Hb) is well described in exposed workers although information on the dose-response association is limited. We used an experimental design to study the association between aniline in air with the formation of Met-Hb in blood and the elimination of aniline in urine. A 6-h exposure of 2 ppm aniline in 19 non-smoking volunteers resulted in a time-dependent increase in Met-Hb in blood and aniline in urine. The maximum Met-Hb level in blood (mean 1.21 ± 0.29 %, range 0.80-2.07 %) and aniline excretion in urine (mean 168.0 ± 51.8 µg/L, range 79.5-418.3 µg/L) were observed at the end of exposure, with both parameters rapidly decreasing after the end of exposure. After 24 h, the mean level of Met-Hb (0.65 ± 0.18 %) returned to the basal level observed prior to the exposure (0.72 ± 0.19 %); whereas, slightly elevated levels of aniline were still present in urine (means 17.0 ± 17.1 vs. 5.7 ± 3.8 µg/L). No differences between males and females as well as between slow and fast acetylators were found. The results obtained after 6-h exposure were also comparable to those observed in four non-smoking volunteers after 8-h exposure. Maximum levels of Met-Hb and aniline in urine were 1.57 % and 305.6 µg/L, respectively. Overall, our results contribute to the risk assessment of aniline and as a result, the protection of workers from aniline-derived adverse health effects at the workplace.


Asunto(s)
Compuestos de Anilina/administración & dosificación , Metahemoglobina/metabolismo , Enfermedades Profesionales/prevención & control , Exposición Profesional/prevención & control , Adulto , Compuestos de Anilina/toxicidad , Compuestos de Anilina/orina , Femenino , Humanos , Masculino , Metahemoglobinemia/inducido químicamente , Metahemoglobinemia/prevención & control , Persona de Mediana Edad , Proyectos Piloto , Medición de Riesgo/métodos , Factores Sexuales , Factores de Tiempo , Adulto Joven
8.
Int J Hyg Environ Health ; 259: 114381, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652941

RESUMEN

Health risks to humans after "fume and smell events", short-term incidents on aircrafts that are accompanied by unpleasant odour or visible smoke, remain a subject of controversy. We assessed exposure to volatile organic compounds (VOC) and organophosphorus compounds (OPC) by biomonitoring in 375 aircrew members after self-reported "fume and smell events" and in 88 persons of the general population. A total of 20 parameters were analysed in blood and urine by gas chromatography and mass spectrometry. Median levels of acetone in blood and urine and 2-propanol in blood were elevated in aircrews compared to controls (p < 0.0001). Additionally, elevated peak exposures, best estimated by the 95th percentiles, were observed in aircrews for n-heptane and n-octane in blood, and acetone, 2,5-hexanedione and o-cresol in urine. Only the maximum observed levels of 2,5-hexandione in urine (768 µg/L) and toluene in blood (77 µg/L) in aircrew members were higher than the current biological exposure indices (BEI® levels) (500 and 20 µg/L, respectively) of the American Conference of Governmental Industrial Hygienists (US-ACGIH) for workers occupationally exposed to n-hexane and toluene, two well-accepted human neurotoxicants. Low-level exposures to n-hexane and toluene could be also observed in controls. The majority of OPC parameters in urine, including those of neurotoxic ortho-isomers of tricresylphosphate, were below the limit of quantitation in both aircrews and controls. Our comparative VOC and OPC analyses in biological samples of a large number of aircrew members and controls suggest that exposures are similar in both groups and generally low.


Asunto(s)
Monitoreo Biológico , Retardadores de Llama , Exposición Profesional , Compuestos Organofosforados , Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/orina , Compuestos Orgánicos Volátiles/sangre , Retardadores de Llama/análisis , Adulto , Compuestos Organofosforados/orina , Compuestos Organofosforados/sangre , Masculino , Exposición Profesional/análisis , Femenino , Persona de Mediana Edad , Aeronaves , Contaminantes Ocupacionales del Aire/análisis , Contaminantes Ocupacionales del Aire/orina , Acetona/orina , Acetona/sangre , Acetona/análisis , Monitoreo del Ambiente/métodos , Adulto Joven , Tolueno/análisis
9.
Arch Toxicol ; 87(7): 1265-72, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23423714

RESUMEN

N-Phenyl-2-naphthylamine (P2NA) was widely used as oxidation inhibitor, particularly in rubber manufacturing. Technical-grade P2NA was contaminated with carcinogenic 2-naphthylamine (2NA), and bladder cancer risk in exposed workers was attributed to this impurity. Investigations in humans and mammalian species revealed that small amounts of 2NA are excreted into urine after exposure to P2NA. However, since 2NA per se is not carcinogenic and main downstream metabolites of 2NA have not been found in urine so far, it remained uncertain if 2NA derived from P2NA dephenylation is further activated to carcinogenic downstream metabolites. An experimental animal study was therefore designed to indicate if, and if yes to which extent, 2NA from P2NA dephenylation is accessible to the metabolic pathway that is held responsible for the carcinogenicity of 2NA. Groups of 5 male and female CD rats were dosed with P2NA (2-550 mg/kg b.w.) and 2NA (0.075-75 mg/kg b.w.); 2NA-haemoglobin adducts and urinary 2NA excretion were determined applying GC-MS/MS. 2NA haemoglobin adducts originated dose-dependently after 2NA and P2NA dosing. To induce identical adduct concentrations, an approximately 100-200-fold higher dose of P2NA was necessary compared to 2NA. Since haemoglobin adducts are formed by the same pathway (N-hydroxylation) as the ultimate carcinogens from 2NA, the comparison of adduct concentrations after 2NA and P2NA dosage permits a quantitative estimate of the carcinogenicity of P2NA. The results show that 2NA derived from dephenylation of P2NA enters the carcinogenic downstream pathway of 2NA in rats. Hence, the bladder cancer risk after human exposures to P2NA must be re-evaluated.


Asunto(s)
2-Naftilamina/análogos & derivados , Antioxidantes/farmacocinética , Antioxidantes/toxicidad , Carcinógenos/farmacocinética , Carcinógenos/toxicidad , Neoplasias de la Vejiga Urinaria/inducido químicamente , 2-Naftilamina/farmacocinética , 2-Naftilamina/toxicidad , Animales , Biomarcadores/orina , Biotransformación , Relación Dosis-Respuesta a Droga , Femenino , Cromatografía de Gases y Espectrometría de Masas , Hemoglobinas/metabolismo , Hidroxilación , Masculino , Ratas , Medición de Riesgo , Espectrometría de Masas en Tándem
10.
Arch Toxicol ; 87(4): 645-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23179756

RESUMEN

Aircraft cabin air can possibly be contaminated by tricresyl phosphates (TCP) from jet engine oils during fume events. o-TCP, a known neurotoxin, has been addressed to be an agent that might cause the symptoms reported by cabin crews after fume events. A total of 332 urine samples of pilots and cabin crew members in common passenger airplanes, who reported fume/odour during their last flight, were analysed for three isomers of tricresyl phosphate metabolites as well as dialkyl and diaryl phosphate metabolites of four flame retardants. None of the samples contained o-TCP metabolites above the limit of detection (LOD 0.5 µg/l). Only one sample contained metabolites of m- and p-tricresyl phosphates with levels near the LOD. Median metabolite levels of tributyl phosphate (TBP), tris-(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPP) (DBP 0.28 µg/l; BCEP 0.33 µg/l; DPP 1.1 µg/l) were found to be significantly higher than in unexposed persons from the general population. Median tris-(2-chloropropyl) phosphate (TCPP) metabolite levels were significantly not higher in air crews than in controls. Health complaints reported by air crews can hardly be addressed to o-TCP exposure in cabin air. Elevated metabolite levels for TBP, TCEP and TPP in air crews might occur due to traces of hydraulic fluid in cabin air (TBP, TPP) or due to release of commonly used flame retardants from the highly flame protected environment in the airplane. A slight occupational exposure of air crews to organophosphates was shown.


Asunto(s)
Contaminación del Aire Interior/análisis , Aeronaves , Retardadores de Llama/análisis , Neurotoxinas/orina , Exposición Profesional/análisis , Tritolilfosfatos/orina , Monitoreo del Ambiente , Humanos , Aceites Industriales/análisis , Isomerismo , Límite de Detección
11.
Ann Occup Hyg ; 57(6): 766-73, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23337464

RESUMEN

N-methyl-2-pyrrolidone (NMP) is an important organic solvent for varnishes in industry. NMP has been previously shown to be a developmental toxicant in rodents. This study reports current exposures to NMP in the spraying department of an automobile plant using biological monitoring. Two specific metabolites, 5-hydroxy-N-methyl-2-pyrrolidone (5-HNMP) and 2-hydroxy-N-methyl-succinimide (2-HMSI), were analyzed in 69 urine samples of 14 workers exposed to NMP and 9 nonexposed controls. Three different working tasks ('loading' and 'cleaning' of the sprayer system and 'wiping/packing' of the sprayed materials) and three sampling times (preshift, postshift, and preshift of the following day) were studied in exposed workers. Median exposures of 5-HNMP and 2-HMSI in postshift urine of exposed workers were 0.91 and 0.52mg g(-1) creatinine, respectively, whereas median levels in controls were below the limit of detection. Decreased levels of 5-HNMP were observed in preshift urine samples on the following day (0.39mg g(-1) creatinine) in exposed workers, while the concentration of 2-HMSI did not change (0.49mg g(-1) creatinine). Highest exposures occurred during sprayer cleaning with a maximum level of 8.31mg g(-1) creatinine of 5-HNMP in postshift urine. In contrast to 'wipers/packers', no decrease in 5-HNMP could be observed in preshift urine samples on day 2 of the 'loaders' and 'cleaners'. Overall, exposure in terms of 5-HNMP postshift and 2-HMSI preshift of the following day were well below the current biological limit values of the European Union (70 and 20mg g(-1) creatinine). Our results provide initial data on NMP exposure in the automobile industry and suggest that the analysis of 5-HNMP in preshift samples also provides essential information, particularly in situations involving direct handling of liquid NMP-containing formulations.


Asunto(s)
Monitoreo del Ambiente/métodos , Exposición Profesional/análisis , Pirrolidinonas/análisis , Pirrolidinonas/orina , Automóviles , Creatinina/análisis , Femenino , Humanos , Industrias , Masculino , Solventes/análisis , Encuestas y Cuestionarios
12.
Int J Hyg Environ Health ; 248: 114110, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36634384

RESUMEN

BACKGROUND: Firefighters are exposed to a variety of hazardous substances including carcinogens such as polycyclic aromatic hydrocarbons (PAH) during firefighting. In order to minimize the uptake of such substances into the body, firefighters wear personal protective equipment. Only few data exist from real-life firefighting missions and under common although highly variable exposure scenarios such as fighting fires in residential buildings, outdoor, and vehicle fires. The aim of this study is to assess the levels of 1-Hydroxypyrene (1-OHP) as marker for incorporated PAH during firefighting operations in Germany using biomonitoring methods. METHODS: We analyzed urine samples for 1-OHP from 77 firefighters who reported firefighting operations (with and without creatinine adjustment). Urine samples were collected before (baseline) and, where applicable, after firefighting operations at three time points subsequent (2-4, 6-8, and 12 h). RESULTS: Compared to the baseline measurements, mean 1-OHP concentrations after firefighting missions were doubled (0.14 vs. 0.31 µg/L urine, 0.13 µg/g vs. 0.27 µg/g creatinine) and this increase was observed 2-4 h after firefighting. Firefighting in residential buildings (N = 54) and of outdoor and vehicle fires (N = 17) occurred most frequently, whereas blazes, vegetation fires, and fires in underground facilities (N = 6) were rarely encountered. For residential building fires, a 3-fold increase in mean 1-OPH concentrations was observed, whereas no increase could be observed for outdoor and vehicle fires. The highest increase was observed for firefighters with interior attack missions (0.11 µg/L vs. 0.48 µg/L 1-OHP) despite the use of self-contained breathing apparatus (SCBA). During the suppression of outdoor or vehicle fires using SCBA, again, no increase was observed. Although PAH are taken up during certain firefighting missions, the 1-OHP levels almost entirely remained (in 64 of the 77 reported missions) within the normal range of the German general population, i.e., below the reference levels (95th percentiles) of smokers (0.73 µg/g creatinine) and non-smokers (0.30 µg/g creatine). CONCLUSION: Under study conditions, properly applied protective clothing and wearing of SCBA led to a significant reduction of PAH exposure levels. But there are individual situations in which PAH are increasingly incorporated since the incorporation depends on several factors and can be extremely variable. In contrast to many workplaces with high occupational exposure levels, firefighters are not exposed to PAH on a daily basis. Nevertheless, the possibility of an individual increased cancer risk for a particular firefighter cannot completely be ruled out.


Asunto(s)
Contaminantes Ocupacionales del Aire , Bomberos , Incendios , Exposición Profesional , Hidrocarburos Policíclicos Aromáticos , Humanos , Hidrocarburos Policíclicos Aromáticos/orina , Monitoreo Biológico , Creatinina , Exposición Profesional/análisis , Alemania , Contaminantes Ocupacionales del Aire/análisis
13.
Front Public Health ; 11: 1321138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38322362

RESUMEN

Acetamiprid (ACE) and imidacloprid (IMI) are insecticides of global importance and are used as spray and watering agents for ornamental plants to control biting and sucking insects or as topical medications on pets to remove and control fleas. Human biomonitoring data on ACE and IMI exposures when applying these products are limited. We investigated exposures to ACE and IMI in male volunteers after the domestic application of either an ACE-containing agent or an IMI-containing spot-on medication. Complete and consecutive urine samples were collected for up to 56 h after application. Urine samples were analyzed for ACE, IMI, and their respective metabolites (N-desmethyl-ACE, IMI-olefin, and sum of 4-/5-hydroxy-IMI) by liquid chromatography-tandem mass spectrometry. Fairly uniform concentrations of N-desmethyl-ACE could be observed before and after orchid treatment, so that an ACE exposure associated with orchid treatment can most likely be excluded. In contrast, after the application of the IMI-containing medication, elevated concentrations of IMI, 4-/5-hydroxy-IMI, and IMI-olefin were quantified in urine samples post-20 h with maximum concentrations of 3.1, 14.9, and 8.0 µg/g creatinine, respectively, well above general background levels. Nevertheless, the IMI intake (10.6 µg/kg bw), calculated from the excreted amounts, was around five times below the current European acceptable daily intake. Based on the case results here, household exposures to ACE and IMI after spray treatment of ornamental plants and anti-flea treatment of dogs can be regarded as low and safe. However, people regularly applying neonicotinoid-containing formulations, such as professional gardeners and employees in animal shelters, should be studied in more detail.


Asunto(s)
Monitoreo Biológico , Insecticidas , Nitrocompuestos , Humanos , Animales , Perros , Neonicotinoides/orina , Insecticidas/orina , Alquenos/análisis
14.
Front Public Health ; 11: 1277812, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152667

RESUMEN

Introduction: Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic to humans and are formed by incomplete combustion. PAHs are always present during firefighting operations, and fire department members can be exposed to them in the workplace. Methods: In this study, we analyzed 1-hydroxypyrene (1-OHP) in 36 urine samples from nine firefighters, collected before and after fire training sessions, and 32 urine samples from eight employees at respiratory protection and hose workshops. To assess breakthrough PAH exposure through personal protective equipment and potential dermal uptake, some of the workshop employees wore cotton garments under their regular workwear. Cotton samples were then examined for the presence of 17 semi-volatile and low-volatility PAHs. Results: After firefighting exercises, we observed approximately a fivefold increase in mean 1-OHP concentrations in samples from firefighters, from 0.24 µg/L to 1.17 µg/L (maximum: 5.31 µg/L). In contrast, 1-OHP levels in workshop employees were found to be low, with the majority of urine samples yielding concentrations below the limit of quantification (LOQ: 0.05 µg/L, maximum: 0.11 µg/L). Similarly, low PAH levels were found on the workshop employees' cotton undergarments, with maximum concentrations of 250 and 205 ng/g for pyrene and benzo[a]pyrene, respectively. Discussion: In conclusion, significant increases in 1-OHP in urine were observed in firefighters after training sessions, whereas work-related exposure remained low among workshop employees.


Asunto(s)
Contaminantes Ocupacionales del Aire , Bomberos , Exposición Profesional , Hidrocarburos Policíclicos Aromáticos , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Ocupacionales del Aire/análisis , Exposición Profesional/prevención & control , Exposición Profesional/análisis , Monitoreo Biológico , Monitoreo del Ambiente
15.
Anal Chem ; 84(8): 3787-94, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22449166

RESUMEN

N-Methyl- and N-ethyl-2-pyrollidone (NMP and NEP) are frequently used industrial solvents and were shown to be embryotoxic in animal experiments. We developed a sensitive, specific, and robust analytical method based on cooled-injection (CIS) gas chromatography and isotope dilution mass spectrometry to analyze 5-hydroxy-N-ethyl-2-pyrrolidone (5-HNEP) and 2-hydroxy-N-ethylsuccinimide (2-HESI), two newly identified presumed metabolites of NEP, and their corresponding methyl counterparts (5-HNMP, 2-HMSI) in human urine. The urine was spiked with deuterium-labeled analogues of these metabolites. The analytes were separated from urinary matrix by solid-phase extraction and silylated prior to quantification. Validation of this method was carried out by using both, spiked pooled urine samples and urine samples from 56 individuals of the general population with no known occupational exposure to NMP and NEP. Interday and intraday imprecision was better than 8% for all metabolites, while the limits of detection were between 5 and 20 µg/L depending on the analyte. The high sensitivity of the method enables us to quantify NMP and NEP metabolites at current environmental exposures by human biomonitoring.


Asunto(s)
Cromatografía de Gases , Espectrometría de Masas , Pirrolidinonas/química , Pirrolidinonas/orina , Técnica de Dilución de Radioisótopos , Adolescente , Adulto , Femenino , Sustancias Peligrosas/orina , Humanos , Límite de Detección , Masculino , Persona de Mediana Edad , Succinimidas/química , Succinimidas/orina , Adulto Joven
16.
Toxics ; 10(11)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36422898

RESUMEN

Glyphosate-based pesticides are the highest-volume used herbicides worldwide. International concerns regarding the potential human adverse effects of glyphosate exposures have heightened since IARC classified glyphosate as probably carcinogenic to humans. Human biomonitoring (HBM) studies have identified ubiquitous exposure to glyphosate and its main breakdown product, aminomethylphosphonic acid (AMPA), from environmental exposures. The IMAGE research project aimed to investigate farm and non-farm families' exposure to glyphosate while aligning with the Human Biomonitoring for Europe (HBM4EU) initiative. The study recruited non-farm and farm families (who use glyphosate on their farms). Each family member provided a urine sample that was analysed using gas chromatography coupled with tandem mass spectrometry, with a limit of quantification of 0.05 µg/L for glyphosate and AMPA. In addition to general information on background exposures in farm and non-farm families, we investigated relationships in exposure between families and family members. We recruited 68 families, including 54 non-farm and 14 farm families (180 vs. 45 individuals). Some pesticide users (n = 14, all male farmers) had slightly elevated AMPA levels compared to other adult participants but, overall, we observed no significant differences between farm and non-farm families. The main metabolite, AMPA, was quantifiable in twice as many samples as glyphosate (61% vs. 32%), with a maximum concentration of 7.24 µg/L vs. 3.21 µg/L. Compared to previous studies, exposure levels were relatively low and far below current health-based guidance values (3% or less for glyphosate and AMPA). Study results suggest potential exposures from residential co-exposures or living with a pesticide user. This is the first study internationally to investigate glyphosate and AMPA across family members (farm and non-farm). We found comparably low glyphosate and AMPA exposures among these families. These results enhance our understanding of glyphosate exposures for different demographic groups and contribute to the scientific knowledge on exposures required for regulatory risk assessments and the re-evaluation of glyphosate in 2022 by the European Commission.

17.
Environ Int ; 146: 106221, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33113467

RESUMEN

N-methyl-2-pyrrolidone (NMP) and its substitute N-ethyl-2-pyrrolidone (NEP) are aprotic solvents used in many technical applications, but also in carpets, and consumer products such as cleaning agents, and cosmetics. NMP and NEP are classified as reproductive toxicants. As a substance of very high concern (SVHC), NMP is included in the European REACH (Registration, Evaluation, Authorisation of Chemicals) candidate listfor authorisation. NMP and NEP metabolites were measured in more than 2100 urine samples of 3- to 17-year-old children and adolescents, participating in the population-representative German Environmental Survey for Children and Adolescents 2014-2017 (GerESV). The two NMP metabolites 5-hydroxy-N-methyl-2-pyrrolidone (5-HNMP) and 2-hydroxy-N-methylsuccinimide (2-HMSI) could be detected and quantified in all urine samples, and the two NEP metabolites 5-hydroxy-N-ethylpyrrolidone (5-HNEP) and 2-hydroxy-N-ethylsuccinimide (2-HESI) in 32% and 87% of the urine samples. Geometric mean concentrations were 103.1 µg/L (88.21 µg/gcreatinine) for the sum of NMP metabolites and 11.86 µg/L (10.15 µg/gcreatinine) for the sum of NEP metabolites, thus remaining below the current health-based human biomonitoring values. For NMP, highest exposure was found in young children, but exposure pathways could not be revealed. Exposure to NEP was highest in adolescents and participants with low socio-economic status or migration background. Associations to usage of personal care products suggested the choice of products to have a distinct impact on NEP exposure. The presented data can be used by the German Human Biomonitoring Commission to derive new reference values (RV95) for NMP and NEP for children and adolescents in Germany. This will facilitate to recognise changing exposure levels in this population group in Germany.


Asunto(s)
Monitoreo Biológico , Pirrolidinonas , Adolescente , Niño , Preescolar , Monitoreo del Ambiente , Alemania , Humanos , Pirrolidinonas/análisis , Solventes/análisis
19.
Artículo en Inglés | MEDLINE | ID: mdl-32890819

RESUMEN

Glyphosate is the highest volume herbicide used worldwide, and its main biodegradation product is aminomethylphosphonic acid (AMPA), both are listed as priority substances in the Human Biomonitoring for Europe (HBM4EU) initiative which aims at improving policy by filling knowledge gaps by targeted research. The objective of the current study was to advance the sensitivity of an existing gas chromatography-tandem mass spectrometry analytical method to measure environmental population exposures. A 50% lower limit of quantification of 0.05 µg/L was achieved for both analytes by slight modifications in sample work-up, and use of another isotope labelled internal standard. In a pilot study, 41 urine samples from the general German population were analysed, of which glyphosate and AMPA could be quantified in 66% and 90% of the samples respectively, which is sufficient to reliably describe distributions of urinary concentrations in the non-occupationally exposed population.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Glicina/análogos & derivados , Organofosfonatos/orina , Adulto , Femenino , Glicina/orina , Humanos , Límite de Detección , Modelos Lineales , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Adulto Joven , Glifosato
20.
J Agric Food Chem ; 56(4): 1371-5, 2008 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-18247534

RESUMEN

The potent aroma compound rose oxide was quantified in several white wines by a headspace solid-phase microextration stable isotope dilution assay (HS-SPME-SIDA) and the enantiomeric ratios of the cis diastereomers were determined by enantioselective capillary GC. The most odor-active stereoisomer (23)-cis-rose oxide was detectable in all investigated white wines ranging from 0.2 to 12 microg/L. However, its contribution to the overall aroma in some white wine varieties can be neglected as indicated by a low odor activity value (OAV). The highest concentrations were found in Gewürztraminer wines, confirming the importance of rose oxide as a varietal aroma compound in this variety. Surprisingly, the enantiomeric ratio of cis-rose oxide in all investigated wines was substantially lower than in nonfermented musts and in some wines almost racemic cis-rose oxide was detected. Fermentation studies with a model must that contained deuterated water revealed that yeast is capable of reducing the precursor 3,7-dimethyl octa-2,5-dien-1,7-diol (geranyl diol I) yielding 3,7-dimethyl-5-octen-1,7-diol (citronellyl diol I) that gives rise to cis- and trans-rose oxide after acid catalyzed cylization. The deuterium labeling pattern of the resulting rose oxide stereoisomers and a clearly detectable kinetic isotope effect indicate that at least two different reductive pathways in yeast exist that yield cis-rose oxide with different enantiomeric ratios altering the genuine enantiomeric ratio in grape musts. The presence of (+)-cis-rose oxides in wines can therefore be attributed to the reductive yeast metabolism during fermentation. This observation corroborates recent findings that the modification of terpene derived varietal aroma is an integral part of yeast metabolism and not only a simple hydrolytical process.


Asunto(s)
Fermentación , Odorantes/análisis , Saccharomyces cerevisiae/metabolismo , Vitis/química , Vino/análisis , Cromatografía de Gases/métodos , Humanos , Olfato , Microextracción en Fase Sólida/métodos , Estereoisomerismo , Gusto , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA