Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Arch Microbiol ; 206(11): 434, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39412681

RESUMEN

Three new strains of Phaffia rhodozyma yeast have recently been isolated in Poland. The aim of this study was to phenotypically characterize these strains and to compare them with the properties of the reference strain. The potential for carotenoid biosynthesis in these strains was also determined, depending on temperature, carbon, and nitrogen sources in the medium. Phaffia rhodozyma yeasts were also identified by MALDI-TOF MS. There were minor differences in cell morphology among the strains. All strains reproduced asexually by budding and formed spherical chlamydospores. No ability for sexual reproduction was observed. Physiological tests showed minor variations between the reference strain and the isolates, likely due to the geographical specificity of the habitat from which they were originally isolated. Analysis of protein spectra showed that the tested yeast isolates had seven common peaks of different intensities, with masses at 2200, 2369, 3213, 3628, 3776, 3921, and 4710 m/z. Moreover, additional strain-dependent spectra were found. The amount of synthesized carotenoids varied with the carbon and nitrogen sources used, as well as the temperature. The best producer of carotenoids was the P. rhodozyma CMIFS 102 isolate.


Asunto(s)
Betula , Carotenoides , Polonia , Carotenoides/metabolismo , Betula/microbiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Nitrógeno/metabolismo , Temperatura , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Carbono/metabolismo
2.
Biotechnol Lett ; 46(4): 641-669, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38687405

RESUMEN

OBJECTIVES: This study aimed to isolate red yeast from sap, bark and slime exudates collected from Polish birch forests and then assessment of their biotechnological potential. RESULTS: 24 strains of red yeast were isolated from the bark, sap and spring slime fluxes of birch (Betula pendula). Strains belonging to Rhodotorula mucilaginosa (6), Rhodosporidiobolus colostri (4), Cystrofilobasidium capitaum (3), Phaffia rhodozyma (3) and Cystobasidium psychroaquaticum (3) were dominant. The highest efficiency of carotenoid biosynthesis (5.04 mg L-1) was obtained by R. mucilaginosa CMIFS 004, while lipids were most efficiently produced by two strains of P. rhodozyma (5.40 and 5.33 g L-1). The highest amount of exopolysaccharides (3.75 g L-1) was produced by the R. glutinis CMIFS 103. Eleven strains showed lipolytic activity, nine amylolytic activity, and only two proteolytic activity. The presence of biosurfactants was not found. The growth of most species of pathogenic moulds was best inhibited by Rhodotorula yeasts. CONCLUSION: Silver birch is a good natural source for the isolation of new strains of red yeast with wide biotechnological potential.


Asunto(s)
Betula , Bosques , Rhodotorula , Betula/microbiología , Betula/química , Polonia , Rhodotorula/metabolismo , Rhodotorula/aislamiento & purificación , Biotecnología/métodos , Basidiomycota/metabolismo , Basidiomycota/aislamiento & purificación , Carotenoides/metabolismo , Carotenoides/química , Corteza de la Planta/microbiología , Corteza de la Planta/química
3.
Arch Microbiol ; 205(10): 348, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37782422

RESUMEN

Anhydrobiosis is a state of living organisms during which their metabolism is reversibly delayed or suspended due to a high degree of dehydration. Yeast cells, which are widely used in the food industry, may be induced into this state. The degree of viability of yeast cells undergoing the drying process also depends on rehydration. In an attempt to explain the essence of the state of anhydrobiosis and clarify the mechanisms responsible for its course, scientists have described various cellular compounds and structures that are responsible for it. The structures discussed in this work include the cell wall and plasma membrane, vacuoles, mitochondria, and lysosomes, among others, while the most important compounds include trehalose, glycogen, glutathione, and lipid droplets. Various proteins (Stf2p; Sip18p; Hsp12p and Hsp70p) and genes (STF2; Nsip18; TRX2; TPS1 and TPS2) are also responsible for the process of anhydrobiosis. Each factor has a specific function and is irreplaceable, detailed information is presented in this overview.


Asunto(s)
Regulación de la Expresión Génica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Membrana Celular , Gotas Lipídicas , Vacuolas
4.
Appl Microbiol Biotechnol ; 107(13): 4199-4215, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37233757

RESUMEN

The attractive biological properties and health benefits of natural astaxanthin (AXT), including its antioxidant and anti-carcinogenic properties, have garnered significant attention from academia and industry seeking natural alternatives to synthetic products. AXT, a red ketocarotenoid, is mainly produced by yeast, microalgae, wild or genetically engineered bacteria. Unfortunately, the large fraction of AXT available in the global market is still obtained using non-environmentally friendly petrochemical-based products. Due to the consumers concerns about synthetic AXT, the market of microbial-AXT is expected to grow exponentially in succeeding years. This review provides a detailed discussion of AXT's bioprocessing technologies and applications as a natural alternative to synthetic counterparts. Additionally, we present, for the first time, a very comprehensive segmentation of the global AXT market and suggest research directions to improve microbial production using sustainable and environmentally friendly practices. KEY POINTS: • Unlock the power of microorganisms for high value AXT production. • Discover the secrets to cost-effective microbial AXT processing. • Uncover the future opportunities in the AXT market.


Asunto(s)
Antioxidantes , Ingeniería Genética , Xantófilas , Levaduras
5.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37373518

RESUMEN

Metalloenzymes play an important role in the regulation of many biological functions. An effective way to prevent deficiencies of essential minerals in human diets is the biofortification of plant materials. The process of enriching crop sprouts under hydroponic conditions is the easiest and cheapest to conduct and control. In this study, the sprouts of the wheat (Triticum aestivum L.) varieties Arkadia and Tonacja underwent biofortification with Fe, Zn, Mg, and Cr solutions in hydroponic media at four concentrations (0, 50, 100, and 200 µg g-1) over four and seven days. Moreover, this study is the first to combine sprout biofortification with UV-C (λ = 254 nm) radiation treatment for seed surface sterilization. The results showed that UV-C radiation was effective in suppressing seed germination contamination by microorganisms. The seed germination energy was slightly affected by UV-C radiation but remained at a high level (79-95%). The influence of this non-chemical sterilization process on seeds was tested in an innovative manner using a scanning electron microscope (SEM) and EXAKT thin-section cutting. The applied sterilization process reduced neither the growth and development of sprouts nor nutrient bioassimilation. In general, wheat sprouts easily accumulate Fe, Zn, Mg, and Cr during the applied growth period. A very strong correlation between the ion concentration in the media and microelement assimilation in the plant tissues (R2 > 0.9) was detected. The results of the quantitative ion assays performed with atomic absorption spectrometry (AAS) using the flame atomization method were correlated with the morphological evaluation of sprouts in order to determine the optimum concentration of individual elements in the hydroponic solution. The best conditions were indicated for 7-day cultivation in 100 µg g-1 of solutions with Fe (218% and 322% better nutrient accumulation in comparison to the control condition) and Zn (19 and 29 times richer in zinc concentration compared to the sprouts without supplementation). The maximum plant product biofortification with magnesium did not exceed 40% in intensity compared to the control sample. The best-developed sprouts were grown in the solution with 50 µg g-1 of Cr. In contrast, the concentration of 200 µg g-1 was clearly toxic to the wheat sprouts.


Asunto(s)
Biofortificación , Triticum , Humanos , Semillas/química , Zinc/análisis , Suplementos Dietéticos/análisis
6.
Molecules ; 28(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37764522

RESUMEN

Bee products from urban apiaries are increasingly used. They are mainly used to promote local apiaries and cities in which they are located. The aim of the study was to compare the chemical composition and antioxidant activity of propolis from 6 Polish apiaries located in cities (Legionowo, Torun, Cracow, Warsaw, Katowice, Lodz). The chemical composition was analyzed using liquid chromatography (HPLC-DAD) and the analysis of antioxidant activity by scavenging free radicals (ABTS and DPPH) and FRAP. The obtained results showed the presence of 24 phenolic compounds in propolis extracts. The tested samples showed differentiation in terms of the content of individual chemical components, however, cinnamic acid and its derivatives were dominant. High antioxidant activity of the tested extracts was demonstrated (ABTS was in the range of 16.80-51.53 mg Te/mL, DPPH was in the range of 7.54-22.13 mg Te/mL, while FRAP reduction was in the range of 10.93-29.55 mg Te/mL). The obtained results compared with literature data on propolis from agricultural areas allow to conclude that propolis samples from both Poland types of areas are similar and can be classified as poplar propolis.


Asunto(s)
Ascomicetos , Própolis , Antioxidantes/farmacología , Agricultura
7.
Molecules ; 28(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37049686

RESUMEN

The work is devoted to the study of the functional and technological properties of oat ß-glucan in low-fat milky ice cream (2% fat) in comparison with the stabilization system Cremodan® SI 320. ß-glucan (0.5%) has a greater effect on the cryoscopic temperature of ice cream mixes than Cremodan® SI 320 in the same amount (decrease by 0.166 °C vs. 0.078 °C), which inhibits the freezing process of free water in ice cream during technological processing in the temperature range from -5 to -10 °C. Microscopy of ice cream samples after freezing and hardening shows the ability of ß-glucan to form a greater number of energy bonds due to specific interaction with milk proteins. Analysis of the microstructure of ice cream samples during 28 d of storage confirms the ability of oat ß-glucan to suppress the growth of ice crystals more effectively than Cremodan® SI 320. Oat ß-glucan gives ice cream a rich creamy taste, increases overrun and resistance to melting, which brings this type of frozen dessert closer to a full-fat analogue (10% fat).


Asunto(s)
Helados , beta-Glucanos , Helados/análisis , Congelación , Indicadores de Calidad de la Atención de Salud
8.
Crit Rev Food Sci Nutr ; 62(25): 6932-6946, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33798005

RESUMEN

Microbial carotenoids have attracted rising interest from several industries as a sustainable alternative to substitute the synthetic ones. Traditionally, carotenoids available in the market are obtained by the chemical route using nonrenewable sources (petrochemicals), revealing the negative impact on the environment and consumers. The most promising developments in the upstream and downstream processes of microbial carotenoids are reviewed in this work. The use of agro-based raw materials for bioproduction, and alternative solvents such as biosolvents, deep eutectic solvents, and ionic liquids for the recovery/polishing of microbial carotenoids were also reviewed. The principal advances in the field, regarding the biorefinery and circular economy concepts, were also discussed for a better understanding of the current developments. This review provides comprehensive overview of the hot topics in the field besides an exhaustive analysis of the main advantages/drawbacks and opportunities regarding the implementation of microbial carotenoids in the market.


Asunto(s)
Carotenoides , Líquidos Iónicos , Solventes
9.
Surg Radiol Anat ; 44(3): 431-441, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34874459

RESUMEN

PURPOSE: Although lumbar discectomy is the most common procedure in spine surgery, reports about anatomical relations between discs and prevertebral vessels are limited. Aim of this research was to investigate morphometric of the lumbar region and the relations between intervertebral discs (IVDs) and abdominal aorta. METHODS: 557 abdominal computed tomography scans were assessed. For each spinal column level from Th12/L1 down to L4/L5, we investigated: intervertebral disc's and vertebra's height, width, length, and distance from aorta or common iliac artery (CIA). Those arteries were also measured in two dimensions and classified based on location. RESULTS: 54.58% of patients were male. There was a significant difference in arterial-disc distances (ADDs) between genders at the levels: L1/L2 (1.32 ± 1.97 vs. 0.96 ± 1.78 mm; p = 0.0194), L2/L3 (1.97 ± 2.16 vs. 1.15 ± 2.01 mm; p < 0.0001), L3/L4 (2.54 ± 2.78 vs. 1.71 ± 2.61 mm; p = 0.0012), also for both CIAs (left CIA 3.64 ± 3.63 vs. 2.6 ± 3.06 mm; p = 0.0004 and right CIA: 7.96 ± 5.06 vs. 5.8 ± 4.57 mm; p < 0.001)-those ADDs were higher in men at all levels. The length and width of IVD increased alongside with disc level with the maximum at L4/L5. CONCLUSION: Bifurcations of the aorta in most cases occurred at the L4 level. Collected data suggest that at the highest lumbar levels, there is a greater possibility to cause injury of the aorta due to its close anatomical relationship with discs. Females have limited, in comparison to males, ADD at L1/L2, L2/L3, and L3/L4 levels what should be taken into consideration during preoperative planning of surgical intervention.


Asunto(s)
Disco Intervertebral , Vértebras Lumbares , Aorta Abdominal/diagnóstico por imagen , Femenino , Humanos , Disco Intervertebral/diagnóstico por imagen , Vértebras Lumbares/cirugía , Región Lumbosacra , Masculino , Tomografía Computarizada por Rayos X
10.
Plant Dis ; 105(2): 251-254, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33297718

RESUMEN

Zymoseptoria tritici is a fungal pathogen causing losses in wheat yields. Here, we present new primer sets for species-specific identification of this microorganism in wheat leaf samples using conventional PCR. Primer sets were validated in silico using tools available in genetic databases. Furthermore, in vitro tests were also carried out on 190 common wheat samples with visual symptoms of Septoria tritici blotch (STB) collected in Poland in three growing seasons (2015, 2016, 2017). The designed primer sets showed full hybridization to the available genetic resources deposited in the NCBI GenBank database, and their high specificity and sensitivity were demonstrated on wheat leaf samples and selected fungal strains.


Asunto(s)
Ascomicetos , Triticum , Ascomicetos/genética , Enfermedades de las Plantas , Polonia
11.
Molecules ; 26(7)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806095

RESUMEN

Over the past several decades, we have observed a very rapid development in the biotechnological use of lactic acid bacteria (LAB) in various branches of the food industry. All such areas of activity of these bacteria are very important and promise enormous economic and industrial successes. LAB are a numerous group of microorganisms that have the ability to ferment sugars into lactic acid and to produce proteolytic enzymes. LAB proteolytic enzymes play an important role in supplying cells with the nitrogen compounds necessary for their growth. Their nutritional requirements in this regard are very high. Lactic acid bacteria require many free amino acids to grow. The available amount of such compounds in the natural environment is usually small, hence the main function of these enzymes is the hydrolysis of proteins to components absorbed by bacterial cells. Enzymes are synthesized inside bacterial cells and are mostly secreted outside the cell. This type of proteinase remains linked to the cell wall structure by covalent bonds. Thanks to advances in enzymology, it is possible to obtain and design new enzymes and their preparations that can be widely used in various biotechnological processes. This article characterizes the proteolytic activity, describes LAB nitrogen metabolism and details the characteristics of the peptide transport system. Potential applications of proteolytic enzymes in many industries are also presented, including the food industry.


Asunto(s)
Proteínas Bacterianas/química , Lactobacillales/enzimología , Péptido Hidrolasas/química
12.
Molecules ; 26(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209563

RESUMEN

Propionic acid bacteria are the source of many metabolites, e.g., propionic acid and trehalose. Compared to microbiological synthesis, the production of these metabolites by petrochemical means or enzymatic conversion is more profitable. The components of microbiological media account for a large part of the costs associated with propionic fermentation, due to the high nutritional requirements of Propionibacterium. This problem can be overcome by formulating a medium based on the by-products of technological processes, which can act as nutritional sources and at the same time replace expensive laboratory preparations (e.g., peptone and yeast extract). The metabolic activity of P. freudenreichii was investigated in two different breeding environments: in a medium containing peptone, yeast extract, and biotin, and in a waste-based medium consisting of only apple pomace and potato wastewater. The highest production of propionic acid amounting to 14.54 g/L was obtained in the medium containing apple pomace and pure laboratory supplements with a yield of 0.44 g/g. Importantly, the acid production parameters in the waste medium reached almost the same level (12.71 g/L, 0.42 g/g) as the medium containing pure supplements. Acetic acid synthesis was more efficient in the waste medium; it was also characterized by a higher level of accumulated trehalose (59.8 mg/g d.s.). Thus, the obtained results show that P. freudenreichii bacteria exhibited relatively high metabolic activity in an environment with apple pomace used as a carbon source and potato wastewater used as a nitrogen source. This method of propioniate production could be cheaper and more sustainable than the chemical manner.


Asunto(s)
Malus/química , Extractos Vegetales/química , Propionatos/metabolismo , Propionibacterium freudenreichii/crecimiento & desarrollo , Solanum tuberosum/química , Aguas Residuales , Medios de Cultivo/química , Aguas Residuales/química , Aguas Residuales/microbiología
13.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32722488

RESUMEN

Selenium (Se) was found to inhibit the growth of the yeast Candida utilis ATCC 9950. Cells cultured in 30 mg selenite/L supplemented medium could bind 1368 µg Se/g of dry weight in their structures. Increased accumulation of trehalose and glycogen was observed, which indicated cell response to stress conditions. The activity of antioxidative enzymes (glutathione peroxidase, glutathione reductase, thioredoxin reductase, and glutathione S-transferase) was significantly higher than that of the control without Se addition. Most Se was bound to water-insoluble protein fraction; in addition, the yeast produced 20-30 nm Se nanoparticles (SeNPs). Part of Se was metabolized to selenomethionine (10%) and selenocysteine (20%). The HPLC-ESI-Orbitrap MS analysis showed the presence of five Se compounds combined with glutathione in the yeast. The obtained results form the basis for further research on the mechanisms of Se metabolism in yeast cells.


Asunto(s)
Antioxidantes/metabolismo , Candida/metabolismo , Proteínas Fúngicas/metabolismo , Nanopartículas del Metal/química , Oxidorreductasas/metabolismo , Selenio/farmacología , Selenio/química
14.
Molecules ; 25(11)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471063

RESUMEN

The biological activities of four aromatic plants, namely frankincense, myrrh, ginger, and turmeric, were reviewed in the current study. The volatile fraction (essential oil) as well as the nonvolatile fraction of these four plants showed different promising biological activities that are displayed in detail. These activities can include protection from and/or alleviation of some ailment, which is supported with different proposed mechanisms of action. This review aimed to finally help researchers to get a handle on the importance of considering these selected aromatic plants, which have not been thoroughly reviewed before, as a potential adjuvant to classical synthetic drugs to enhance their efficiency. Moreover, the results elicited in this review encourage the consumption of these medicinal plants as an integrated part of the diet to boost the body's overall health based on scientific evidence.


Asunto(s)
Olíbano/metabolismo , Animales , Curcuma/metabolismo , Curcumina/metabolismo , Zingiber officinale/metabolismo , Humanos , Neoplasias/metabolismo , Aceites Volátiles/metabolismo
15.
Mol Biol Rep ; 46(2): 1797-1808, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30734169

RESUMEN

Selenium exhibits health-promoting properties in humans and animals. Therefore, the development of selenium-enriched dietary supplements has been growing worldwide. However, it may also exhibit toxicity at higher concentrations, causing increased oxidative stress. Different species of yeasts may exhibit different tolerances toward selenium. Therefore, in this study, we aimed to determine the effect of selenium on growth and on the antioxidative system in Candida utilis ATCC 9950 and Saccharomyces cerevisiae ATCC MYA-2200 yeast cells. The results of this study have demonstrated that high doses of selenium causes oxidative stress in yeasts, thereby increasing the process of lipid peroxidation. In addition, we obtained an increased level of GSSG from aqueous solutions of yeast biomass grown with selenium supplementation (40-60 mg/L). Increased levels of selenium in aqueous solutions resulted in an increase in the activity of antioxidant enzymes, including glutathione peroxidase and glutathione reductase. These results should encourage future research on the possibility of a thorough understanding of antioxidant system functioning in yeast cells.


Asunto(s)
Candida/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Selenio/metabolismo , Selenio/farmacología , Antioxidantes/farmacología , Candida/enzimología , Candida/metabolismo , Proliferación Celular/efectos de los fármacos , Suplementos Dietéticos , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
World J Microbiol Biotechnol ; 35(10): 157, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31576445

RESUMEN

In this study, we aimed to determine the effect of exogenous stress factors (sodium chloride as osmotic stressor, hydrogen peroxide as an inducer of oxidative stress, white light irradiation, and low temperature) on the biosynthesis of carotenoids and lipids by red yeast (Rhodotorula glutinis, R. mucilaginosa, and R. gracilis) during cultivation in media containing potato wastewater and glycerol. According to our results, the yeast were able to grow and biosynthesize lipids and carotenoids in the presence of the applied stress factors. Low temperature caused an increase in the biosynthesis of intracellular lipids and carotenoids. R. gracilis synthesized lipids (21.1 g/100 gd.w.) and carotenoids (360.4 µg/gd.w.) in greater quantities than that of other strains. Under these conditions, there was also an increase in the content of unsaturated fatty acids, especially linoleic and linolenic acids. The highest percentage of polyunsaturated fatty acid (PUFA) (30.4%) was synthesized by the R. gracilis yeast after cultivation at 20°C. Their quantity was 2.5-fold greater than that of the biomass grown in control conditions. The contribution of individual carotenoid fractions depended both on the yeast strain and the culture conditions. Induction of osmotic stress and low temperature intensified the biosynthesis of ß-carotene (up to 73.9% of the total carotenoid content). In oxidative stress conditions, yeast synthesized torulene (up to 82.2%) more efficiently than under other conditions, whereas white light irradiation increased the production of torularhodin (up to 20.0%).


Asunto(s)
Carotenoides/biosíntesis , Medios de Cultivo/metabolismo , Lípidos/biosíntesis , Rhodotorula/metabolismo , Medios de Cultivo/química , Residuos Industriales/análisis , Rhodotorula/genética , Rhodotorula/crecimiento & desarrollo
17.
Microb Cell Fact ; 17(1): 49, 2018 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-29587755

RESUMEN

Torulene and torularhodin represent the group of carotenoids and are synthesized by yeasts and fungi. The most important producers of these two compounds include yeasts of Rhodotorula and Sporobolomyces genera. The first reports confirming the presence of torulene and torularhodin in the cells of microorganisms date to the 1930s and 1940s; however, only in the past few years, the number of works describing the properties of these compounds increased. These compounds have strong anti-oxidative and anti-microbial properties, and thus may be successfully used as food, feedstock, and cosmetics additives. In addition, tests performed on rats and mice showed that both torulene and torularhodin have anti-cancerous properties. In order to commercialize the production of these two carotenoids, it is necessary to obtain highly efficient yeast strains, for example, via mutagenization and optimization of cultivation conditions. Further studies on the activity of torulene and torularhodin on the human body are also needed.


Asunto(s)
Carotenoides/química , Animales , Humanos , Ratas , Ratas Wistar
18.
Appl Microbiol Biotechnol ; 100(14): 6103-6117, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27209039

RESUMEN

Rhodotorula glutinis is capable of synthesizing numerous valuable compounds with a wide industrial usage. Biomass of this yeast constitutes sources of microbiological oils, and the whole pool of fatty acids is dominated by oleic, linoleic, and palmitic acid. Due to its composition, the lipids may be useful as a source for the production of the so-called third-generation biodiesel. These yeasts are also capable of synthesizing carotenoids such as ß-carotene, torulene, and torularhodin. Due to their health-promoting characteristics, carotenoids are commonly used in the cosmetic, pharmaceutical, and food industries. They are also used as additives in fodders for livestock, fish, and crustaceans. A significant characteristic of R. glutinis is its capability to produce numerous enzymes, in particular, phenylalanine ammonia lyase (PAL). This enzyme is used in the food industry in the production of L-phenylalanine that constitutes the substrate for the synthesis of aspartame-a sweetener commonly used in the food industry.


Asunto(s)
Carotenoides/biosíntesis , Enzimas/química , Ácidos Grasos/biosíntesis , Microbiología Industrial , Rhodotorula/química , Biocombustibles/microbiología , Biomasa , Ácido Linoleico/biosíntesis , Ácido Oléico/biosíntesis , Ácido Palmítico/metabolismo , Fenilalanina/metabolismo , Fenilanina Amoníaco-Liasa/biosíntesis , Rhodotorula/enzimología , beta Caroteno/biosíntesis
19.
Cancers (Basel) ; 16(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39061159

RESUMEN

Anti-cancer immunotherapies entirely changed the therapeutic approach to oncological patients. However, despite the undeniable success of anti-PD-1, PD-L1, and CTLA-4 antibody treatments, their effectiveness is limited either by certain types of malignancies or by the arising problem of cancer resistance. B7H4 (aliases B7x, B7H4, B7S1, VTCN1) is a member of a B7 immune checkpoint family with a distinct expression pattern from classical immune checkpoint pathways. The growing amount of research results seem to support the thesis that B7H4 might be a very potent therapeutic target. B7H4 was demonstrated to promote tumour progression in immune "cold" tumours by promoting migration, proliferation of tumour cells, and cancer stem cell persistence. B7H4 suppresses T cell effector functions, including inflammatory cytokine production, cytolytic activity, proliferation of T cells, and promoting the polarisation of naïve CD4 T cells into induced Tregs. This review aimed to summarise the available information about B7H4, focusing in particular on clinical implications, immunological mechanisms, potential strategies for malignancy treatment, and ongoing clinical trials.

20.
Cells ; 13(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38786018

RESUMEN

Cancer immunotherapy is a rapidly developing field of medicine that aims to use the host's immune mechanisms to inhibit and eliminate cancer cells. Antibodies targeting CTLA-4, PD-1, and its ligand PD-L1 are used in various cancer therapies. However, the most thoroughly researched pathway targeting PD-1/PD-L1 has many limitations, and multiple malignancies resist its effects. Human endogenous retrovirus-H Long repeat-associating 2 (HHLA2, known as B7H5/B7H7/B7y) is the youngest known molecule from the B7 family. HHLA2/TMIGD2/KIRD3DL3 is one of the critical pathways in modulating the immune response. Recent studies have demonstrated that HHLA2 has a double effect in modulating the immune system. The connection of HHLA2 with TMIGD2 induces T cell growth and cytokine production via an AKT-dependent signaling cascade. On the other hand, the binding of HHLA2 and KIR3DL3 leads to the inhibition of T cells and mediates tumor resistance against NK cells. This review aimed to summarize novel information about HHLA2, focusing on immunological mechanisms and clinical features of the HHLA2/KIR3DL3/TMIGD2 pathway in the context of potential strategies for malignancy treatment.


Asunto(s)
Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/metabolismo , Inmunoterapia/métodos , Antígenos B7/metabolismo , Animales , Transducción de Señal , Inmunoglobulinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA