Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 69(1): 24-35.e5, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29290612

RESUMEN

The protection and efficient restart of stalled replication forks is critical for the maintenance of genome integrity. Here, we identify a regulatory pathway that promotes stalled forks recovery from replication stress. We show that the mammalian replisome component C20orf43/RTF2 (homologous to S. pombe Rtf2) must be removed for fork restart to be optimal. We further show that the proteasomal shuttle proteins DDI1 and DDI2 are required for RTF2 removal from stalled forks. Persistence of RTF2 at stalled forks results in fork restart defects, hyperactivation of the DNA damage signal, accumulation of single-stranded DNA (ssDNA), sensitivity to replication drugs, and chromosome instability. These results establish that RTF2 removal is a key determinant for the ability of cells to manage replication stress and maintain genome integrity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN/genética , Inestabilidad Genómica/genética , Proteasas de Ácido Aspártico/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , ADN/biosíntesis , Reparación del ADN/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Interferencia de ARN , ARN Interferente Pequeño/genética , Origen de Réplica/genética , Estrés Fisiológico/genética
2.
Development ; 146(1)2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30559276

RESUMEN

During Drosophila oogenesis, specialized actin-based structures called ring canals form and expand to accommodate growth of the oocyte. Previous work demonstrated that Kelch and Cullin 3 function together in a Cullin 3-RING ubiquitin ligase complex (CRL3Kelch) to organize the ring canal cytoskeleton, presumably by targeting a substrate for proteolysis. Here, we use tandem affinity purification followed by mass spectrometry to identify HtsRC as the CRL3Kelch ring canal substrate. CRISPR-mediated mutagenesis of HtsRC revealed its requirement in the recruitment of the ring canal F-actin cytoskeleton. We present genetic evidence consistent with HtsRC being the CRL3Kelch substrate, as well as biochemical evidence indicating that HtsRC is ubiquitylated and degraded by the proteasome. Finally, we identify a short sequence motif in HtsRC that is necessary for Kelch binding. These findings uncover an unusual mechanism during development wherein a specialized cytoskeletal structure is regulated and remodeled by the ubiquitin-proteasome system.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Microfilamentos/metabolismo , Oocitos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitinación , Citoesqueleto de Actina/genética , Actinas/genética , Actinas/metabolismo , Animales , Sistemas CRISPR-Cas , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de Microfilamentos/genética , Mutagénesis , Oocitos/citología , Complejo de la Endopetidasa Proteasomal/genética
3.
Nature ; 493(7432): 356-63, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23325218

RESUMEN

The function of Fanconi anaemia proteins is to maintain genomic stability. Their main role is in the repair of DNA interstrand crosslinks, which, by covalently binding the Watson and the Crick strands of DNA, impede replication and transcription. Inappropriate repair of interstrand crosslinks causes genomic instability, leading to cancer; conversely, the toxicity of crosslinking agents makes them a powerful chemotherapeutic. Fanconi anaemia proteins can promote stem-cell function, prevent tumorigenesis, stabilize replication forks and inhibit inaccurate repair. Recent advances have identified endogenous aldehydes as possible culprits of DNA damage that may induce the phenotypes seen in patients with Fanconi anaemia.


Asunto(s)
Reparación del ADN , ADN/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Animales , Transformación Celular Neoplásica , ADN/química , ADN/genética , Etanol/metabolismo , Anemia de Fanconi/patología , Humanos , Células Madre/metabolismo
4.
Nat Commun ; 15(1): 1943, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431617

RESUMEN

DNA replication through a challenging genomic landscape is coordinated by the replisome, which must adjust to local conditions to provide appropriate replication speed and respond to lesions that hinder its progression. We have previously shown that proteasome shuttle proteins, DNA Damage Inducible 1 and 2 (DDI1/2), regulate Replication Termination Factor 2 (RTF2) levels at stalled replisomes, allowing fork stabilization and restart. Here, we show that during unperturbed replication, RTF2 regulates replisome localization of RNase H2, a heterotrimeric enzyme that removes RNA from RNA-DNA heteroduplexes. RTF2, like RNase H2, is essential for mammalian development and maintains normal replication speed. However, persistent RTF2 and RNase H2 at stalled replication forks prevent efficient replication restart, which is dependent on PRIM1, the primase component of DNA polymerase α-primase. Our data show a fundamental need for RTF2-dependent regulation of replication-coupled ribonucleotide removal and reveal the existence of PRIM1-mediated direct replication restart in mammalian cells.


Asunto(s)
Replicación del ADN , ADN , Animales , ADN/genética , ADN/metabolismo , Daño del ADN , Proteínas de Ciclo Celular/metabolismo , ARN/genética , Ribonucleasas/metabolismo , Mamíferos/genética
5.
bioRxiv ; 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36993543

RESUMEN

Genetic information is duplicated via the highly regulated process of DNA replication. The machinery coordinating this process, the replisome, encounters many challenges, including replication fork-stalling lesions that threaten the accurate and timely transmission of genetic information. Cells have multiple mechanisms to repair or bypass lesions that would otherwise compromise DNA replication1,2. We have previously shown that proteasome shuttle proteins, DNA Damage Inducible 1 and 2 (DDI1/2) function to regulate Replication Termination Factor 2 (RTF2) at the stalled replisome, allowing for replication fork stabilization and restart3. Here we show that RTF2 regulates replisome localization of RNase H2, a heterotrimeric enzyme responsible for removing RNA in the context of RNA-DNA heteroduplexes4-6. We show that during unperturbed DNA replication, RTF2, like RNase H2, is required to maintain normal replication fork speeds. However, persistent RTF2 and RNase H2 at stalled replication forks compromises the replication stress response, preventing efficient replication restart. Such restart is dependent on PRIM1, the primase component of DNA polymerase α-primase. Our data show a fundamental need for regulation of replication-coupled ribonucleotide incorporation during normal replication and the replication stress response that is achieved through RTF2. We also provide evidence for PRIM1 function in direct replication restart following replication stress in mammalian cells.

6.
DNA Repair (Amst) ; 7(3): 476-86, 2008 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18258493

RESUMEN

Cells mutant for multiple endocrine neoplasia type I (MEN1) or any of the Fanconi anemia (FA) genes are hypersensitive to the killing effects of crosslinking agents, but the precise roles of these genes in the response to interstrand crosslinks (ICLs) are unknown. To determine if MEN1 and the FA genes function cooperatively in the same repair process or in distinct repair processes, we exploited Drosophila genetics to compare the mutation frequency and spectra of MEN1 and FANCD2 mutants and to perform genetic interaction studies. We created a novel in vivo reporter system in Drosophila based on the supF gene and showed that MEN1 mutant flies were extremely prone to single base deletions within a homopolymeric tract. FANCD2 mutants, on the other hand, had a mutation frequency and spectrum similar to wild type using this assay. In contrast to the supF results, both MEN1 and FANCD2 mutants were hypermutable using a different assay based on the lats tumor suppressor gene. The lats assay showed that FANCD2 mutants had a high frequency of large deletions, which the supF assay was not able to detect, while large deletions were rare in MEN1 mutants. Genetic interaction studies showed that neither overexpression nor loss of MEN1 modified the ICL sensitivity of FANCD2 mutants. The strikingly different mutation spectra of MEN1 and FANCD2 mutants together with lack of evidence for genetic interaction between these genes indicate MEN1 plays an essential role in ICL repair distinct from the Fanconi anemia genes.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Animales , Secuencia de Bases , Reactivos de Enlaces Cruzados/farmacología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Femenino , Pérdida de Heterocigocidad , Masculino , Datos de Secuencia Molecular , Mutagénesis , Mutágenos/farmacología , Mutación/genética
7.
J Clin Invest ; 127(5): 1991-2006, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28414293

RESUMEN

Inborn errors of DNA repair or replication underlie a variety of clinical phenotypes. We studied 5 patients from 4 kindreds, all of whom displayed intrauterine growth retardation, chronic neutropenia, and NK cell deficiency. Four of the 5 patients also had postnatal growth retardation. The association of neutropenia and NK cell deficiency, which is unusual among primary immunodeficiencies and bone marrow failures, was due to a blockade in the bone marrow and was mildly symptomatic. We discovered compound heterozygous rare mutations in Go-Ichi-Ni-San (GINS) complex subunit 1 (GINS1, also known as PSF1) in the 5 patients. The GINS complex is essential for eukaryotic DNA replication, and homozygous null mutations of GINS component-encoding genes are embryonic lethal in mice. The patients' fibroblasts displayed impaired GINS complex assembly, basal replication stress, impaired checkpoint signaling, defective cell cycle control, and genomic instability, which was rescued by WT GINS1. The residual levels of GINS1 activity reached 3% to 16% in patients' cells, depending on their GINS1 genotype, and correlated with the severity of growth retardation and the in vitro cellular phenotype. The levels of GINS1 activity did not influence the immunological phenotype, which was uniform. Autosomal recessive, partial GINS1 deficiency impairs DNA replication and underlies intra-uterine (and postnatal) growth retardation, chronic neutropenia, and NK cell deficiency.


Asunto(s)
Proteínas de Unión al ADN/deficiencia , Enfermedades Genéticas Congénitas , Trastornos del Crecimiento , Síndromes de Inmunodeficiencia , Células Asesinas Naturales , Neutropenia , Animales , Proteínas de Unión al ADN/inmunología , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/inmunología , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/inmunología , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/inmunología , Humanos , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/inmunología , Lactante , Masculino , Ratones , Neutropenia/genética , Neutropenia/inmunología
8.
Cell Rep ; 5(1): 207-15, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-24080495

RESUMEN

Holliday junctions (HJs), the DNA intermediates of homologous recombination, need to be faithfully processed in order to preserve genome integrity. In human cells, the BLM helicase complex promotes nonnucleolytic dissolution of double HJs. In vitro, HJs may be nucleolytically processed by MUS81-EME1, GEN1, and SLX4-SLX1. Here, we exploit human SLX4-null cells to examine the requirements for HJ resolution in vivo. Lack of BLM and SLX4 or GEN1 and SLX4 is synthetically lethal in the absence of exogenous DNA damage, and lethality is a consequence of dysfunctional mitosis proceeding in the presence of unprocessed HJs. Thus, GEN1 activity cannot be substituted for the SLX4-associated nucleases, and one of the HJ resolvase activities, either of those associated with SLX4 or with GEN1, is required for cell viability, even in the presence of BLM. In vivo HJ resolution depends on both SLX4-associated MUS81-EME1 and SLX1, suggesting that they are acting in concert in the context of SLX4.


Asunto(s)
Replicación del ADN , ADN Cruciforme/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Resolvasas de Unión Holliday/genética , Recombinasas/genética , ADN Cruciforme/metabolismo , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas , Endonucleasas/metabolismo , Resolvasas de Unión Holliday/metabolismo , Humanos , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Recombinasas/metabolismo , Transfección
9.
DNA Repair (Amst) ; 8(8): 944-52, 2009 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-19608464

RESUMEN

MEN1, the gene responsible for the cancer predisposition syndrome multiple endocrine neoplasia type I, has been implicated in DNA repair, cell cycle control, and transcriptional regulation. It is unclear to what degree these processes are integrated into a single encompassing function in normal cellular physiology and how deficiency of the MEN1-encoded protein, "menin", contributes to cancer pathogenesis. In this study, we found that loss of Men1 in mouse embryonic fibroblasts caused abrogation of the G1/S and intra-S checkpoints following ionizing radiation. The cyclin-dependent kinase inhibitor, p21, failed to be upregulated in the mutant although upstream checkpoint signaling remained intact. Menin localized to the p21 promoter in a DNA damage-dependent manner. The MLL histone methyltransferase, a positive transcriptional regulator, bound to the same region in the presence of menin but not in Men1(-/-) cells. Finally, p53 retained damage-responsive binding to the p21 promoter in the Men1 mutant. These data indicate that menin participates in the checkpoint response in a transcriptional capacity, upregulating the DNA damage-responsive target p21.


Asunto(s)
Ciclo Celular , Daño del ADN , Modelos Biológicos , Proteínas Proto-Oncogénicas/deficiencia , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , Proteínas de Ciclo Celular/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Fase G1/efectos de los fármacos , Fase G1/efectos de la radiación , N-Metiltransferasa de Histona-Lisina , Ratones , Mutágenos/farmacología , Mutación/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Fenotipo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/efectos de la radiación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Radiación Ionizante , Fase S/efectos de los fármacos , Fase S/efectos de la radiación , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/efectos de la radiación
10.
Cancer Res ; 66(17): 8397-403, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16951149

RESUMEN

Multiple endocrine neoplasia type 1 (MEN1) is a cancer susceptibility syndrome affecting several endocrine tissues. Investigations of the biochemical function of the MEN1 protein, menin, have suggested a role as a transcriptional comodulator. The mechanism by which MEN1 inactivation leads to tumor formation is not fully understood. MEN1 was implicated to function in both regulation of cell proliferation and maintenance of genomic integrity. Here, we investigate the mechanism by which MEN1 affects DNA damage response. We found that Drosophila larval tissue and mouse embryonic fibroblasts mutant for the MEN1 homologue were deficient for a DNA damage-activated S-phase checkpoint. The forkhead transcription factor CHES1 (FOXN3) was identified as an interacting protein by a genetic screen, and overexpression of CHES1 restored both cell cycle arrest and viability of MEN1 mutant flies after ionizing radiation exposure. We showed a biochemical interaction between human menin and CHES1 and showed that the COOH terminus of menin, which is frequently mutated in MEN1 patients, is necessary for this interaction. Our data indicate that menin is involved in the activation of S-phase arrest in response to ionizing radiation. CHES1 is a component of a transcriptional repressor complex, that includes mSin3a, histone deacetylase (HDAC) 1, and HDAC2, and it interacts with menin in an S-phase checkpoint pathway related to DNA damage response.


Asunto(s)
Proteínas de Ciclo Celular/genética , Daño del ADN , ADN de Neoplasias/genética , Neoplasia Endocrina Múltiple Tipo 1/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Animales , Proteínas de Ciclo Celular/metabolismo , División Celular , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Factores de Transcripción Forkhead , Fase G2 , Humanos , Larva , Neoplasia Endocrina Múltiple Tipo 1/patología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Represoras/metabolismo , Transfección
11.
Genome Res ; 14(6): 1025-35, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15140832

RESUMEN

We report a remarkably high UV-radiation resistance in the extremely halophilic archaeon Halobacterium NRC-1 withstanding up to 110 J/m2 with no loss of viability. Gene knockout analysis in two putative photolyase-like genes (phr1 and phr2) implicated only phr2 in photoreactivation. The UV-response was further characterized by analyzing simultaneously, along with gene function and protein interactions inferred through comparative genomics approaches, mRNA changes for all 2400 genes during light and dark repair. In addition to photoreactivation, three other putative repair mechanisms were identified including d(CTAG) methylation-directed mismatch repair, four oxidative damage repair enzymes, and two proteases for eliminating damaged proteins. Moreover, a UV-induced down-regulation of many important metabolic functions was observed during light repair and seems to be a phenomenon shared by all three domains of life. The systems analysis has facilitated the assignment of putative functions to 26 of 33 key proteins in the UV response through sequence-based methods and/or similarities of their predicted three-dimensional structures to known structures in the PDB. Finally, the systems analysis has raised, through the integration of experimentally determined and computationally inferred data, many experimentally testable hypotheses that describe the metabolic and regulatory networks of Halobacterium NRC-1.


Asunto(s)
Halobacterium/genética , Halobacterium/efectos de la radiación , Animales , Proteínas Arqueales/fisiología , Cricetinae , Reparación del ADN/genética , Desoxirribodipirimidina Fotoliasa/deficiencia , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica Arqueal/genética , Regulación de la Expresión Génica Arqueal/efectos de la radiación , Halobacterium/clasificación , Halobacterium/enzimología , Luz , Mesocricetus/genética , Ratones , Mutación/genética , ARN de Archaea/genética , ARN Mensajero/genética , Proteínas Represoras/genética , Homología de Secuencia de Ácido Nucleico , Tasa de Supervivencia , Factores de Tiempo , Factores de Transcripción/genética , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA