Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 59(17): 12928-12940, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32812750

RESUMEN

Classical hydroformylation catalysts use mononuclear rhodium(I) complexes as precursors; however, very few examples of bimetallic systems have been reported. Herein, we report fully substituted dirhodium(II,II) complexes (C1-C6) containing acetate and diphenylformamidinate bridging ligands (L1-L4). The structure and geometry around these paddlewheel-type, bimetallic cores were confirmed by single-crystal X-ray diffraction. The complexes C3-C6 show electrochemical redox reactions, with the expected reduction (Rh24+/3+) and two oxidation (Rh24+/5+ and Rh25+/6+) electron transfer processes. Furthermore, the bimetallic complexes were evaluated as catalyst precursors for the hydroformylation of 1-octene, with the acetate-containing complexes (C1 and C2) showing near quantitative conversion (>99%) of 1-octene, excellent activity and chemoselectivity toward aldehydes (>98%), with moderate regioselectivity toward linear products. Replacement of the acetate with diphenylformamidinate ligands (complexes C3-C6) yielded moderate-to-good chemoselectivity and regioselectivity, favoring linear aldehydes.

2.
RSC Adv ; 14(11): 7507-7516, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38440278

RESUMEN

This study addresses the pressing issue of depleting natural resources of platinum group metals (PGMs), driven by their widespread use in modern applications and increasing demand for renewable energy technologies. With conventional sources dwindling, the search for economically viable recovery methods from alternative sources has become crucial. Our focus was on innovating efficient recovery strategies, leading to the development of two novel silica-anchored adsorbents: DTMSP-BT-SG, a highly efficient acylthiourea adsorbent, and BTMSPA-SG, a silica-anchored amine adsorbent. We conducted comprehensive experiments under PGM mining wastewater conditions, varying parameters such as adsorbent mass, pH, concentration, contact time, competing ions, and volume. DTMSP-BT-SG demonstrated exceptional performance, achieving maximum adsorption efficiencies of >98% for Pt and >99% for Pd at pH 2, 0.5 g L-1 dosage, and 5 mg L-1 concentration. In contrast, under the same conditions, BTMSPA-SG recovered <56% and <89% of Pt and Pd, respectively. The experimental data for both adsorbents were analysed using Langmuir and Freundlich isotherm models for concentration and pseudo-first and second-order models for contact time. The Langmuir model best described the adsorption data, indicating homogenous monolayer adsorption of Pt and Pd. The kinetic models suggested a pseudo-second-order process, implying chemisorption. Furthermore, in the presence of competing ions and other PGMs, DTMSP-BT-SG exhibited significantly higher recovery rates for Pt and Pd compared to BTMSPA-SG. Overall, DTMSP-BT-SG emerged as a more selective and efficient adsorbent across varied parameters. Its exceptional adsorption efficiency, coupled with cost-effectiveness, positions it as a promising and competitive recovery agent for extracting PGMs from mining wastewaters.

3.
Dalton Trans ; 50(34): 11742-11762, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34369524

RESUMEN

Despite the concerted efforts to develop targeted cancer treatments, these therapies are plagued by the rapid development of resistance and serious adverse drug reactions. Based on the wide clinical use and successes of the platinum drugs like cisplatin and oxaliplatin, we investigated the synthesis and potential anticancer efficacy of alternative platinum complexes. A series of nine cationic square planar platinum(ii) complexes were synthesized and characterized and then evaluated for their anticancer activity. The complexes were of the type [Pt(diimine)(Ln-κO,S)]+ where diimine is either 1,10-phenanthroline (phen), 5,6-dimethyl-1,10-phenanthroline (dmp) or dipyrido[3,2-f:2',3'-h]quinoxaline (dpq) and Ln-κO,S representing various N,N-dibutyl-N'-acylthiourea ligands. The anticancer activity of the synthesised complexes was evaluated against two lung cancer cell lines (A549 and H1975) and a colorectal cancer cell line, HT-29. The 50% inhibitory concentrations (IC50) for the most cytotoxic compounds were determined and the mode of cell death evaluated. The structure-activity relationships indicated that complexes with the 5,6-dimethyl-1,10-phenanthroline variation of the diimine ligand were the most active against the cell lines tested, while the activity of complexes based on the acylthiourea ligand varied between the cell lines. IC50 values for the three active platinum complexes were in the low micromolar range for the three cell lines and ranged between 0.68 µM and 2.28 µM. Changes to cell morphology indicate that the active platinum complexes induce cell death by both apoptosis and paraptosis. The complexes were able to induce the nuclear expression of the cyclin-dependent kinase inhibitor, p21, which is an indicator of DNA damage. The collective data indicate that these platinum complexes are valuable lead compounds for further analysis and cancer drug discovery.


Asunto(s)
Complejos de Coordinación , División del ADN , Antineoplásicos , Fenantrolinas
4.
Chemosphere ; 239: 124768, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31518917

RESUMEN

There is a need for cheap but, efficient methods for the removal of precious metals from wastewaters, which are normally lost during mineral processing. Moreover, the disposal of yeast waste from brewing has been a problem in many parts of the world. In this study, the removal of Pt(IV) from aqueous solutions using the readily available bentonite clay functionalised with spent yeast from brewing was investigated. The maximum adsorption capacity of Pt(IV) with 100 mg yeast-functionalised bentonite at pH 2 within 90 min was 255 µg g-1 (98.5% efficiency) but, decreased as pH increased. The adsorption capacity of Pt(IV) was insignificantly (p > 0.05) affected by the presence of competing ions (Fe(III), Ca(II), Mg(II), K(I), Co(II), Ni(II), Hf(IV), Zn(II) and other platinum group metals (PGMs)). Moreover, most of these metals were significantly adsorbed along with Pt(IV). The indicative cost-benefit analysis showed that 1 kg of the yeast-functionalised bentonite can remove ∼700 g Pt(IV) in which a profit of more than USD20000 can be made. The bentonite functionalised with spent yeast from brewing has a potential to recover lost PGMs in wastewater. Since, this is a cheap process, the mining and other industries can make much profit from such recoveries.


Asunto(s)
Bentonita/química , Platino (Metal)/aislamiento & purificación , Saccharomyces cerevisiae/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Concentración de Iones de Hidrógeno , Residuos Industriales , Metales/química , Soluciones , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Agua/química
5.
Dalton Trans ; 42(11): 3791-801, 2013 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23212303

RESUMEN

(1)H NMR chemical shift concentration dependence as well as the diffusion coefficients from DOSY NMR of mixed ligand [Pt(II)(1,10-phenanthroline)(N-pyrrolidyl-N-(2,2-dimethylpropanoyl)thiourea)]Cl ([Pt(II)(phen)(L(1)-S,O)]Cl) dissolved in mixtures of acetonitrile-water in the range 0-30% (v/v) D(2)O-CD(3)CN shows that the complex cation (M(+) = [Pt(II)(phen)(L(1)-S,O)](+)) aggregates to form dimers, 2M(+) ⇌ {M(+)}(2), with association constants ranging from K(D)(CD(3)CN) = 17 ± 2 M(-1) to K(D)(30% (v/v) D(2)O-CD(3)CN) = 71 ± 8 M(-1) at 299.3 K, presumably via non-covalent cation-π interactions. Experimental data are consistent with an 'offset' face-to-face cation-π stacking arrangement of the planar cation. However in water-rich solvent mixtures from >30% (v/v) D(2)O-CD(3)CN to pure D(2)O, the extent of aggregation significantly increases until a critical aggregation concentration (CAC) is reached, estimated to be 9.6 and 10.3 mM from (1)H NMR chemical shift concentration dependence and DOSY NMR measurements respectively. Above the CAC the formation of nano-structures formulated as {[Pt(II)(phen)(L(1)-S,O)](+)}(n)Cl(-)(y) (n, y > 2) is indicated. DOSY studies show a significant decrease of the average diffusion coefficient D(obs) as a function of increasing concentration of [Pt(II)(phen)(L(1)-S,O)]Cl in D(2)O. The aggregation number (N) estimated from hydrodynamic volumes of the mononuclear [Pt(II)(phen)(L(1)-S,O)](+) cation (V(H)(0)), and those V(H) estimated from D(obs) (N = V(H)/V(H)(0)) as a function of total complex concentration, ranges from ~2 to ~735 in pure D(2)O. Above the CAC well defined nano-structures which may be loosely termed "metallogels" could be characterized by means of transmission electron microscopy. As expected the addition of NaCl appears to increase the extent of aggregate formation, by presumably stabilizing the formation of nano-sized {[Pt(II)(phen)(L(1)-S,O)](+)}(n)Cl(-)(y) aggregates preventing excessive positive electrostatic charge build-up.


Asunto(s)
Complejos de Coordinación/síntesis química , Nanopartículas/química , Fenantrolinas/síntesis química , Platino (Metal)/química , Complejos de Coordinación/química , Cinética , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Transmisión , Estructura Molecular , Nanopartículas/ultraestructura , Fenantrolinas/química , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA