Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Res Toxicol ; 28(3): 408-18, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25560372

RESUMEN

Exposure to ambient fine particulate matter (PM2.5) increases the risk of respiratory disease. Although previous mitochondrial research has provided new information about PM toxicity in the lung, the exact mechanism of PM2.5-mediated structural and functional damage of lung mitochondria remains unclear. In this study, changes in lung mitochondrial morphology, expression of mitochondrial fission/fusion markers, lipid peroxidation, and transport ATPase activity in SD rats exposed to ambient PM2.5 at different dosages were investigated. Also, the release of reactive oxygen species (ROS) via the respiratory burst in rat alveolar macrophages (AMs) exposed to PM2.5 was examined by luminol-dependent chemiluminescence (CL). The results showed that (1) PM2.5 deposited in the lung and induced pathological damage, particularly causing abnormal alterations of mitochondrial structure, including mitochondrial swelling and cristae disorder or even fragmentation in the presence of higher doses of PM2.5; (2) PM2.5 significantly affected the expression of specific mitochondrial fission/fusion markers (OPA1, Mfn1, Mfn2, Fis1, and Drp1) in rat lung; (3) PM2.5 inhibited Mn superoxide dismutase (MnSOD), Na(+)K(+)-ATPase, and Ca(2+)-ATPase activities and elevated malondialdehyde (MDA) content in rat lung mitochondria; and (4) PM2.5 induced rat AMs to produce ROS, which was inhibited by about 84.1% by diphenyleneiodonium chloride (DPI), an important ROS generation inhibitor. It is suggested that the pathological injury observed in rat lung exposed to PM2.5 is associated with mitochondrial fusion-fission dysfunction, ROS generation, mitochondrial lipid peroxidation, and cellular homeostasis imbalance. Damage to lung mitochondria may be one of the important mechanisms by which PM2.5 induces lung injury, contributing to respiratory diseases.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Pulmón/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/genética , Material Particulado/toxicidad , Animales , ATPasas Transportadoras de Calcio/metabolismo , Células Cultivadas , Expresión Génica , Peroxidación de Lípido/efectos de los fármacos , Pulmón/metabolismo , Pulmón/ultraestructura , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Masculino , Malondialdehído/metabolismo , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Superóxido Dismutasa/metabolismo
2.
Environ Sci Pollut Res Int ; 22(24): 20167-76, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26304807

RESUMEN

Fine particulate matter (PM2.5) exposure is associated with morbidity and mortality induced by respiratory diseases and increases the lung cancer risk. However, the mechanisms therein involved are not yet fully clarified. In this study, the PM2.5 suspensions at different dosages (0.375, 1.5, 6.0, and 24.0 mg/kg body weight) were respectively given to rats by the intratracheal instillation. The results showed that PM2.5 exposure induced inflammatory cell infiltration and hyperemia in the lung tissues and increased the inflammatory cell numbers in bronchoalveolar lavage fluid. Furthermore, PM2.5 significantly elevated the levels of pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1ß, and intercellular adhesion molecule 1 (ICAM-1) and the expression of c-fos and c-jun in rat lungs exposed to higher dose of PM2.5. These changes were accompanied by decreases of activities of superoxide dismutase and increases of levels of malondialdehyde, inducible nitric oxide synthase, nitric oxide, cytochrome P450s, and glutathione S-transferase. The results implicated that acute exposure to PM2.5 induced pathologically pulmonary changes, unchained inflammatory and oxidative stress processes, activated metabolic enzyme activity, and enhanced proto-oncogene expression, which might be one of the possible mechanisms by which PM2.5 pollution induces lung injury and may be the important determinants for the susceptibility to respiratory diseases.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Lesión Pulmonar , Pulmón/enzimología , Estrés Oxidativo/efectos de los fármacos , Material Particulado/toxicidad , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-jun/genética , Animales , Biomarcadores/análisis , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/análisis , Citocinas/genética , Pulmón/inmunología , Pulmón/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/inmunología , Lesión Pulmonar/patología , Masculino , Estrés Oxidativo/inmunología , Tamaño de la Partícula , Ratas Wistar
3.
J Hazard Mater ; 287: 392-401, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25677476

RESUMEN

Epidemiological studies suggested that ambient fine particulate matter (PM2.5) exposure was associated with cardiovascular disease. However, the underlying mechanism, especially the mitochondrial damage mechanism, of PM2.5-induced heart acute injury is still unclear. In this study, the alterations of mitochondrial morphology and mitochondrial fission/fusion gene expression, oxidative stress, calcium homeostasis and inflammation in hearts of rats exposed to PM2.5 with different dosages (0.375, 1.5, 6.0 and 24.0mg/kg body weight) were investigated. The results indicated that the PM2.5 exposure induced pathological changes and ultra-structural damage in hearts such as mitochondrial swell and cristae disorder. Furthermore, PM2.5 exposure significantly increased specific mitochondrial fission/fusion gene (Fis1, Mfn1, Mfn2, Drp1 and OPA1) expression in rat hearts. These changes were accompanied by decreases of activities of superoxide dismutase (SOD), Na(+)K(+)-ATPase and Ca(2+)-ATPase and increases of levels of malondialdehyde (MDA), inducible nitric oxide synthase (iNOS) and nitric oxide (NO) as well as levels of pro-inflammatory mediators including TNF-α, IL-6 and IL-1ß in rat hearts. The results implicate that mitochondrial damage, oxidative stress, cellular homeostasis imbalance and inflammation are potentially important mechanisms for the PM2.5-induced heart injury, and may have relations with cardiovascular disease.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Corazón/efectos de los fármacos , Mitocondrias Cardíacas/efectos de los fármacos , Material Particulado/toxicidad , Animales , Citocinas/metabolismo , Expresión Génica/efectos de los fármacos , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Miocardio/metabolismo , Miocardio/patología , Miocardio/ultraestructura , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley
4.
Chemosphere ; 112: 296-304, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25048919

RESUMEN

BACKGROUND: Exposure to sulfur dioxide (SO2) increases asthma risk. Inflammatory and immune responses are typical in asthma disease. The exact effect of SO2 on modulation of the inflammatory and immune responses in asthmatic rats remains unclear. OBJECTIVES: Here we sought to investigate the molecular mechanisms underlying the NF-κB inflammatory pathway and the Th1/Th2 imbalance in asthmatic rats exposed to SO2. METHODS: Male Wistar rats were challenged by ovalbumin (OVA) or SO2 alone or together, and then mRNA and protein levels of some inflammatory and immune genes were measured. NF-κB nuclear translocation was analyzed. Bronchoalveolar lavage (BAL), inflammatory cell counts and histopathologic examination were performed. RESULTS: (1) OVA plus SO2 induced abnormal pathological changes and inflammatory responses in lung relative to exposure to OVA alone; (2) showing NF-κB nuclear translocation and activation through up-regulating IKKß mRNA and protein expression and down-regulating IκBα expression in the presence of OVA or OVA plus SO2; (3) OVA plus SO2 significantly raised TNF-α and IL-6 levels in BALF compared with the OVA group; (4) SO2 markedly elevated IL-4 levels and decreased IFN-γ levels in BALF in the asthmatic rats, stimulating IgE generation which was closely related to inhibiting the expression of Foxp3, a specific marker of regulatory T cells. CONCLUSIONS: SO2 affects the airway inflammatory and immune responses of the asthmatic rats and enhances the susceptibility to OVA by aggravating inflammatory responses in lungs, up-regulating pro-inflammatory cytokine expression, and causing the Th1/Th2 imbalance, which might contribute to the increased risk of asthma disease.


Asunto(s)
Asma/inmunología , Contaminantes Ambientales/farmacología , Dióxido de Azufre/farmacología , Animales , Asma/sangre , Asma/genética , Asma/metabolismo , Citocinas/genética , Citocinas/metabolismo , Interacciones Farmacológicas , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Inmunoglobulina E/sangre , Inflamación/sangre , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/metabolismo , Masculino , Ovalbúmina/inmunología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA