Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Phys Condens Matter ; 36(23)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38417164

RESUMEN

The adsorption of organic molecules to surfaces is a central issue to achieve fully-functional molecular devices, for which porphyrins are well-studied due to their chemical stability and functional diversity. Herein, we investigate both the physical and the chemical adsorption of the free-base tetraphenylporphyrin 2H-TPP on the Cu(111) surface within the framework of density functional theory and find that the most stable physisorbed configuration is more weakly bound by -0.31 eV than the chemisorbed configuration. We use the electron localization function to investigate the difference in binding mechanisms between strong physisorption and weak chemisorption. We have computed a reaction barrier of 0.12 eV in going from physical binding to chemical bonding to the surface, and a barrier of 50 meV in going between neighboring physical binding sites. Our results support the possibility of realizing free-base porphyrins either physisorbed or chemisorbed on Cu(111) depending on the deposition procedure and experimental conditions.

2.
J Phys Condens Matter ; 32(31): 315502, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32175916

RESUMEN

To distinguish between chemical bonding and physical binding is usually simple. They differ, in the normal case, in both interaction strength (binding energy) and interaction length (structure). However, chemical bonding can be weak (e.g. in some metallic bonding) and physical binding can be strong (e.g. due to permanent electrostatic moments, hydrogen binding, etc) making differentiation non-trivial. But since these are shared-electron or unshared-electron interactions, respectively, it is in principle possible to distinguish the type of interaction by analyzing the electron density around the interaction point(s)/interface. After all, the former should be a contact while the latter should be a tunneling barrier. Here, we investigate within the framework of density functional theory typical molecules and crystals to show the behaviour of the electron localization function (ELF) in different shared-electron interactions, such as chemical (covalent) and metallic bonding and compare to unshared-electron interactions typical for physical binding, such as ionic, hydrogen and Keesom, dispersion (van der Waals) binding and attempt to categorise them only by the ELF and the electron population in the interaction region. It is found that the ELF method is not only useful for the characterization of covalent bonds but a lot of information can be extracted also for weaker types of binding. Furthermore, the charge integration over the interaction region(s) and tracing the ELF profile can reveal the strength of the bonding/binding ranging from the triple bonds to weak dispersion.

3.
Sci Adv ; 6(3): eaaz1100, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32010777

RESUMEN

Heusler compounds are exciting materials for future spintronics applications because they display a wide range of tunable electronic and magnetic interactions. Here, we use a femtosecond laser to directly transfer spin polarization from one element to another in a half-metallic Heusler material, Co2MnGe. This spin transfer initiates as soon as light is incident on the material, demonstrating spatial transfer of angular momentum between neighboring atomic sites on time scales < 10 fs. Using ultrafast high harmonic pulses to simultaneously and independently probe the magnetic state of two elements during laser excitation, we find that the magnetization of Co is enhanced, while that of Mn rapidly quenches. Density functional theory calculations show that the optical excitation directly transfers spin from one magnetic sublattice to another through preferred spin-polarized excitation pathways. This direct manipulation of spins via light provides a path toward spintronic devices that can operate on few-femtosecond or faster time scales.

4.
J Phys Condens Matter ; 30(37): 375801, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30079893

RESUMEN

In magnetic materials, nontrivial spin textures may emerge due to the competition among different types of magnetic interactions. Among such spin textures, chiral magnetic solitons represent topologically protected spin configurations with particle-like properties. Based on atomistic spin dynamics simulations, we demonstrate that these chiral magnetic solitons are ideal to use for logical operations, and we demonstrate the functionality of a three-input majority gate, in which the input states can be controlled by applying an external electromagnetic field or spin-polarized currents. One of the main advantages of the proposed device is that the input and output signals are encoded in the chirality of solitons, that may be moved, allowing to perform logical operations using only minute electric currents. As an example we illustrate how the three input majority gate can be used to perform logical relations, such as Boolean AND and OR.

5.
Sci Rep ; 6: 25685, 2016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27156906

RESUMEN

In magnetic materials a variety of non-collinear ground state configurations may emerge as a result of competition among exchange, anisotropy, and dipole-dipole interaction, yielding magnetic states far more complex than those of homogenous ferromagnets. Of particular interest in this study are particle-like configurations. These particle-like states, e.g., magnetic solitons, skyrmions, or domain walls, form a spatially localised clot of magnetic energy. In this paper we address topologically protected magnetic solitons and explore concepts that potentially might be relevant for logical operations and/or information storage in the rapidly advancing filed of solitonics (and skyrmionics). An ability to easily create, address, and manipulate such structures is among the prerequisite forming a basis of "-onics technology", and is investigated in detail here using numerical and analytical tools.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA