Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Inf Model ; 64(12): 4673-4686, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38528664

RESUMEN

The phenomenon of hysteresis in simulations, in which a system's current state is correlated to previous states and inhibits the transition to a more stable phase, may often lead to misleading results in physical chemistry. In this study, in addition to the replica exchange method (REM), a novel approach was taken by combining an evolution strategy based on the evolutionary principles of nature to predict phase transitions for the Hess-Su liquid-crystal model. In this model, an anisotropy term is added to the simple 6-12 Lennard-Jones model to intuitively reproduce the behavior of liquid crystals. We first applied the pressure-temperature REM to the Hess-Su model and optimized the replica spacing for the energy distribution to gain the maximum advantage from the REM. We then used the same approach as for the Hamiltonian REM, seeking to optimize the replica spacing in the same way. Based on both results, we attempted to predict this coarse-grained liquid-crystal model's exact phase transition point. In the Hamiltonian REM, replicas were prepared with different molecular aspect ratios corresponding to the values of the anisotropy terms in the potential function. The Hess-Su liquid-crystal model, which undergoes a direct transition from the nematic to the solid phase without going through a smectic phase, is a challenging research target for understanding phase transitions. Despite the tremendous computational difficulty in overcoming the strong hysteresis present in this system, our method could predict the phase transition point clearly and significantly reduce the extent of hysteresis. Our approach is beneficial when simulating more complex systems and, above all, shows great potential for more accurate and efficient phase transition predictions in the field of molecular simulation in the future.


Asunto(s)
Cristales Líquidos , Transición de Fase , Cristales Líquidos/química , Anisotropía , Modelos Químicos , Temperatura , Termodinámica , Modelos Moleculares , Simulación de Dinámica Molecular
2.
J Chem Inf Model ; 62(24): 6544-6552, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-35785994

RESUMEN

We have incorporated Evolution Strategies into the Replica-Exchange Monte Carlo simulation method to predict the phase behavior of several example fluids. The replica-exchange method allows one system to exchange temperatures with its neighbors to search for the most stable structure relatively efficiently in a single simulation. However, if the temperature intervals of the replicas are not positioned carefully, there is an issue that local exchange does not occur. Our results for a simple Lennard-Jones fluid and the liquid-crystal Yukawa model demonstrate the utility of the approach when compared to conventional methods. When Evolution Strategies were applied to the Replica-Exchange Monte Carlo simulation, the problem of a significant localized decrease in exchange probability near the phase transition was avoided. By obtaining the optimal temperature intervals, the system efficiently traverses a broader parameter space with a small number of replicas. This is equivalent to accelerating molecular simulations with limited computational resources and can be useful when attempting to predict the phase behavior of complex systems.


Asunto(s)
Temperatura , Simulación por Computador , Transición de Fase , Método de Montecarlo
3.
Molecules ; 26(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33808039

RESUMEN

In this work, the advantages of applying the temperature and pressure replica-exchange method to investigate the phase transitions and the hysteresis for liquid-crystal fluids were demonstrated. In applying this method to the commonly used Hess-Su liquid-crystal model, heat capacity peaks and points of phase co-existence were observed. The absence of a smectic phase at higher densities and a narrow range of the nematic phase were reported. The identity of the crystalline phase of this system was found to a hexagonal close-packed solid. Since the nematic-solid phase transition is strongly first order, care must be taken when using this model not to inadvertently simulate meta-stable nematic states at higher densities. In further analysis, the Weighted Histogram Analysis Method was applied to verify the precise locations of the phase transition points.


Asunto(s)
Cristales Líquidos/química , Modelos Químicos , Simulación por Computador , Modelos Moleculares , Método de Montecarlo , Transición de Fase
4.
J Phys Chem B ; 127(32): 7194-7204, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37540189

RESUMEN

In this paper, molecular chirality is studied for liquid-crystal fluids represented by hard rods with the addition of an attractive chiral dispersion term. Chiral forces between molecular pairs are assumed to be long-ranged and are described in terms of the pseudotensor of Goossens [W. J. A. Goossens, Mol. Cryst. Liq. Cryst. 1971, 12, 237-244]. Following Varga and Jackson [S. Varga and G. Jackson, Chem. Phys. Lett. 2003, 377, 6-12], this is combined with a hard-spherocylinder core. We investigate the relationship between molecular chirality and the helical pitch of the system, which occurs in the absence of full three-dimensional periodic boundary conditions. The dependence of the wavenumber of this pitch on the thermodynamic variables, temperature, and density is measured. We also explore the use of a novel surface boundary interaction model. As a result of this approach, we are able to lower the temperature of the system without the occurrence of nematic droplets, which would interfere with the formation of a uniaxial pitch. Regarding the theoretical predictions of Wensink and Jackson [H. H. Wensink and G. Jackson, J. Chem. Phys. 2009, 130, 234911], on the one hand, we have qualitative agreement with the observed non-monotonic density dependence of the wavenumber. Initially increasing with density, the wavenumber reaches a maximum, before falling as the density moves toward the point of phase transition from cholesteric to smectic. However, further analysis for shorter rods, in the presence of novel boundary conditions, reveals some disagreement with the theory, at least in this case; the unwinding of the cholesteric helix in the cholesteric phase occurs simultaneously with subtle increases in smectic ordering. These pre-smectic fluctuations have not been accounted for so far in theories on cholesterics but turn out to play a key role in controlling the pitch of cholesteric phases of rod-shaped mesogens with a small to moderate aspect ratio.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA