Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Chem Res Toxicol ; 27(9): 1619-31, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25157679

RESUMEN

The structurally related exocyclic guanine adducts α-hydroxypropano-dG (α-OH-PdG), γ-hydroxypropano-dG (γ-OH-PdG), and M1dG are formed when DNA is exposed to the reactive aldehydes acrolein and malondialdehyde (MDA). These lesions are believed to form the basis for the observed cytotoxicity and mutagenicity of acrolein and MDA. In an effort to understand the enzymatic pathways and chemical mechanisms that are involved in the repair of acrolein- and MDA-induced DNA damage, we investigated the ability of the DNA repair enzyme AlkB, an α-ketoglutarate/Fe(II) dependent dioxygenase, to process α-OH-PdG, γ-OH-PdG, and M1dG in both single- and double-stranded DNA contexts. By monitoring the repair reactions using quadrupole time-of-flight (Q-TOF) mass spectrometry, it was established that AlkB can oxidatively dealkylate γ-OH-PdG most efficiently, followed by M1dG and α-OH-PdG. The AlkB repair mechanism involved multiple intermediates and complex, overlapping repair pathways. For example, the three exocyclic guanine adducts were shown to be in equilibrium with open-ring aldehydic forms, which were trapped using (pentafluorobenzyl)hydroxylamine (PFBHA) or NaBH4. AlkB repaired the trapped open-ring form of γ-OH-PdG but not the trapped open-ring of α-OH-PdG. Taken together, this study provides a detailed mechanism by which three-carbon bridge exocyclic guanine adducts can be processed by AlkB and suggests an important role for the AlkB family of dioxygenases in protecting against the deleterious biological consequences of acrolein and MDA.


Asunto(s)
Acroleína/química , Aductos de ADN/metabolismo , Desoxiguanosina/química , Proteínas de Escherichia coli/metabolismo , Malondialdehído/química , Oxigenasas de Función Mixta/metabolismo , Borohidruros/química , Cromatografía Líquida de Alta Presión , ADN/química , ADN/metabolismo , Aductos de ADN/química , Reparación del ADN , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Oligonucleótidos/análisis , Oligonucleótidos/síntesis química , Espectrometría de Masas en Tándem
2.
Chem Res Toxicol ; 25(2): 422-35, 2012 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-22313351

RESUMEN

trans-4-Hydroxynonenal (HNE) is the major peroxidation product of ω-6 polyunsaturated fatty acids in vivo. Michael addition of the N(2)-amino group of dGuo to HNE followed by ring closure of N1 onto the aldehyde results in four diastereomeric 1,N(2)-dGuo (1,N(2)-HNE-dGuo) adducts. The (6S,8R,11S)-HNE-1,N(2)-dGuo adduct was incorporated into the 18-mer templates 5'-d(TCATXGAATCCTTCCCCC)-3' and d(TCACXGAATCCTTCCCCC)-3', where X = (6S,8R,11S)-HNE-1,N(2)-dGuo adduct. These differed in the identity of the template 5'-neighbor base, which was either Thy or Cyt, respectively. Each of these templates was annealed with either a 13-mer primer 5'-d(GGGGGAAGGATTC)-3' or a 14-mer primer 5'-d(GGGGGAAGGATTCC)-3'. The addition of dNTPs to the 13-mer primer allowed analysis of dNTP insertion opposite to the (6S,8R,11S)-HNE-1,N(2)-dGuo adduct, whereas the 14-mer primer allowed analysis of dNTP extension past a primed (6S,8R,11S)-HNE-1,N(2)-dGuo:dCyd pair. The Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) belongs to the Y-family of error-prone polymerases. Replication bypass studies in vitro reveal that this polymerase inserted dNTPs opposite the (6S,8R,11S)-HNE-1,N(2)-dGuo adduct in a sequence-specific manner. If the template 5'-neighbor base was dCyt, the polymerase inserted primarily dGTP, whereas if the template 5'-neighbor base was dThy, the polymerase inserted primarily dATP. The latter event would predict low levels of Gua → Thy mutations during replication bypass when the template 5'-neighbor base is dThy. When presented with a primed (6S,8R,11S)-HNE-1,N(2)-dGuo:dCyd pair, the polymerase conducted full-length primer extension. Structures for ternary (Dpo4-DNA-dNTP) complexes with all four template-primers were obtained. For the 18-mer:13-mer template-primers in which the polymerase was confronted with the (6S,8R,11S)-HNE-1,N(2)-dGuo adduct, the (6S,8R,11S)-1,N(2)-dGuo lesion remained in the ring-closed conformation at the active site. The incoming dNTP, either dGTP or dATP, was positioned with Watson-Crick pairing opposite the template 5'-neighbor base, dCyt or dThy, respectively. In contrast, for the 18-mer:14-mer template-primers with a primed (6S,8R,11S)-HNE-1,N(2)-dGuo:dCyd pair, ring opening of the adduct to the corresponding N(2)-dGuo aldehyde species occurred. This allowed Watson-Crick base pairing at the (6S,8R,11S)-HNE-1,N(2)-dGuo:dCyd pair.


Asunto(s)
Aldehídos/metabolismo , Aductos de ADN/metabolismo , ADN Polimerasa beta/metabolismo , Replicación del ADN , Desoxiguanosina/metabolismo , Proteínas Arqueales/metabolismo , Desoxiguanosina/análogos & derivados , Sulfolobus solfataricus
3.
J Am Chem Soc ; 133(40): 16101-10, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21916419

RESUMEN

Michael addition of trans-4-hydroxynonenal (HNE) to deoxyguanosine yields diastereomeric 1,N(2)-dG adducts in DNA. When placed opposite dC in the 5'-CpG-3' sequence, the (6S,8R,11S) diastereomer forms a N(2)-dG:N(2)-dG interstrand cross-link [Wang, H.; Kozekov, I. D.; Harris, T. M.; Rizzo, C. J. J. Am. Chem. Soc.2003, 125, 5687-5700]. We refined its structure in 5'-d(G(1)C(2)T(3)A(4)G(5)C(6)X(7)A(8)G(9)T(10)C(11)C(12))-3'·5'-d(G(13)G(14)A(15)C(16)T(17)C(18)Y(19)C(20)T(21)A(22)G(23)C(24))-3' [X(7) is the dG adjacent to the C6 carbon of the cross-link or the α-carbon of the (6S,8R,11S) 1,N(2)-dG adduct, and Y(19) is the dG adjacent to the C8 carbon of the cross-link or the γ-carbon of the HNE-derived (6S,8R,11S) 1,N(2)-dG adduct; the cross-link is in the 5'-CpG-3' sequence]. Introduction of (13)C at the C8 carbon of the cross-link revealed one (13)C8→H8 correlation, indicating that the cross-link existed predominantly as a carbinolamine linkage. The H8 proton exhibited NOEs to Y(19) H1', C(20) H1', and C(20) H4', orienting it toward the complementary strand, consistent with the (6S,8R,11S) configuration. An NOE was also observed between the HNE H11 proton and Y(19) H1', orienting the former toward the complementary strand. Imine and pyrimidopurinone linkages were excluded by observation of the Y(19)N(2)H and X(7) N1H protons, respectively. A strong H8→H11 NOE and no (3)J((13)C→H) coupling for the (13)C8-O-C11-H11 eliminated the tetrahydrofuran species derived from the (6S,8R,11S) 1,N(2)-dG adduct. The (6S,8R,11S) carbinolamine linkage and the HNE side chain were located in the minor groove. The X(7)N(2) and Y(19)N(2) atoms were in the gauche conformation with respect to the linkage, maintaining Watson-Crick hydrogen bonds at the cross-linked base pairs. A solvated molecular dynamics simulation indicated that the anti conformation of the hydroxyl group with respect to C6 of the tether minimized steric interaction and predicted hydrogen bonds involving O8H with C(20)O(2) of the 5'-neighbor base pair G(5)·C(20) and O11H with C(18)O(2) of X(7)·C(18). These may, in part, explain the stability of this cross-link and the stereochemical preference for the (6S,8R,11S) configuration.


Asunto(s)
Aldehídos/química , Reactivos de Enlaces Cruzados/química , Aductos de ADN/química , Enlace de Hidrógeno , Sustancias Intercalantes/química , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Estereoisomerismo
4.
Chem Res Toxicol ; 24(7): 1123-33, 2011 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-21561113

RESUMEN

The γ-hydroxy-1,N(2)-propano-2'-deoxyguanosine adduct (γ-OH-PdG) was introduced into 5'-d(GCTAGCXAGTCC)-3'·5'-d(GGACTCGCTAGC)-3' (X = γ-OH-PdG). In the presence of excess peptide KWKK, (13)C isotope-edited NMR revealed the formation of two spectroscopically distinct DNA-KWKK conjugates. These involved the reaction of the KWKK N-terminal amino group with the N(2)-dG propylaldehyde tautomer of the γ-OH-PdG lesion. The guanine N1 base imino resonance at the site of conjugation was observed in isotope-edited (15)N NMR experiments, suggesting that the conjugated guanine was inserted into the duplex and that the guanine imino proton was protected from exchange with water. The conjugates could be reduced in the presence of NaCNBH(3), suggesting that they existed, in part, as imine (Schiff base) linkages. However, (13)C isotope-edited NMR failed to detect the imine linkages, suggesting that these KWKK conjugates existed predominantly as diastereomeric carbinolamines, in equilibrium with trace amounts of the imines. The structures of the diastereomeric DNA-KWKK conjugates were predicted from potential energy minimization of model structures derived from the refined structure of the fully reduced cross-link [ Huang, H., Kozekov, I. D., Kozekova, A., Rizzo, C. J., McCullough, A., Lloyd, R. S., and Stone, M. P. ( 2010 ) Biochemistry , 49 , 6155 -6164 ]. Molecular dynamics calculations carried out in explicit solvent suggested that the conjugate bearing the S-carbinolamine linkage was the major species due to its potential for intramolecular hydrogen bonding. These carbinolamine DNA-KWKK conjugates thermally stabilized duplex DNA. However, the DNA-KWKK conjugates were chemically reversible and dissociated when the DNA was denatured. In this 5'-CpX-3' sequence, the DNA-KWKK conjugates slowly converted to interstrand N(2)-dG:N(2)-dG DNA cross-links and ring-opened γ-OH-PdG derivatives over a period of weeks.


Asunto(s)
Aminas/química , Aductos de ADN/química , Desoxiguanosina/análogos & derivados , Péptidos/química , Acroleína/química , Acroleína/toxicidad , Secuencia de Aminoácidos , Enlace de Hidrógeno , Iminas/química , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Oligodesoxirribonucleótidos/química , Temperatura de Transición
5.
Biochemistry ; 49(29): 6155-64, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20604523

RESUMEN

DNA-protein conjugates are potentially repaired via proteolytic digestion to DNA-peptide conjugates. The latter have been modeled with the amino-terminal lysine of the peptide KWKK conjugated via a trimethylene linkage to the N(2)-dG amine positioned in 5'-d(GCTAGCXAGTCC)-3'.5'-d(GGACTCGCTAGC)-3' (X = N(2)-dG-trimethylene link-KWKK). This linkage is a surrogate for the reversible linkage formed by the gamma-OH-1,N(2)-propanodeoxyguanosine (gamma-OH-PdG) adduct. This conjugated KWKK stabilizes the DNA. Amino acids K(26), W(27), K(28), and K(29) are in the minor groove. The W(27) indolyl group does not intercalate into the DNA. The G(7) N(2) amine and the K(26) N-terminal amine nitrogens are in the trans configuration with respect to the C(alpha) or C(gamma) of the trimethylene tether, respectively. The structure of this DNA-KWKK conjugate is discussed in the context of its biological processing.


Asunto(s)
Aductos de ADN/química , Daño del ADN , Reparación del ADN , Modelos Moleculares , Oligodesoxirribonucleótidos/química , Oligopéptidos/química , Acroleína/química , Aminas/química , Ciclopropanos/química , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Conformación de Ácido Nucleico
6.
Chem Res Toxicol ; 23(8): 1330-41, 2010 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-20578729

RESUMEN

Oligonucleotides were synthesized containing the 7-(2-oxoheptyl)-etheno-dGuo adduct, which is derived from the reaction of dGuo and the lipid peroxidation product 4-oxo-2-nonenal. The in vitro replication of 7-(2-oxoheptyl)-etheno-dGuo by the model Y-family polymerase Sulfolobus solfataricus P2 DNA Polymerase IV (Dpo4) was examined in two sequences. The extension products were sequenced using an improved LC-ESI-MS/MS protocol developed in our laboratories, and the results were compared to that of the 1,N(2)-etheno-dGuo adduct in the same sequence contexts. Both etheno adducts were highly miscoding when situated in 5'-TXG-3' local sequence contexts with <4% of the extension products being derived from error-free bypass. The major extension products resulted from the misinsertion of Ade opposite the adduct and a one-base deletion. The major extension products from replication of the etheno lesions in a 5'-CXG-3' local sequence context were the result of misinsertion of Ade, a one-base deletion, and error-free bypass. Other minor extension products were also identified. The 7-(2-oxoheptyl)-etheno-dGuo lesion resulted in a larger frequency of misinsertion of Ade, whereas the 1,N(2)-etheno-dGuo gave more of the one-base deletion product. Conformational studies of duplex DNA containing the 7-(2-oxoheptyl)-etheno-dGuo in a 5'-TXG-3' sequence context by NMR indicated the presence of a pH-dependent conformational transition, likely involving the glycosyl bond at the adducted guanosine; the pK(a) for this transition was lower than that observed for the 1,N(2)-epsilon-dGuo lesion. However, the 7-(2-oxoheptyl)-etheno-dGuo lesion, the complementary Cyt, and both flanking base pairs remained disordered at all pH values, which is attributed to the presence of the hydrophobic heptyl group of the 7-(2-oxoheptyl)-etheno-dGuo lesion. The altered pK(a) value and the structural disorder at the 7-(2-oxoheptyl)-etheno-dGuo lesion site, as compared to the same sequence containing the 1,N(2)-etheno-dGuo, may contribute to higher frequency of misinsertion of Ade.


Asunto(s)
ADN Polimerasa beta/metabolismo , Desoxiadenosinas/metabolismo , Guanina/análogos & derivados , Oligonucleótidos/biosíntesis , Oligonucleótidos/química , Sulfolobus solfataricus/enzimología , Cromatografía Líquida de Alta Presión , Guanina/química , Guanina/metabolismo , Estructura Molecular , Oligonucleótidos/metabolismo , Espectrometría de Masa por Ionización de Electrospray
7.
Chem Res Toxicol ; 23(6): 1076-88, 2010 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-20377178

RESUMEN

2-Amino-3-methylimidazo[1,2-d]naphthalene (cIQ) is a carbocyclic analogue of the dietary carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) in which a naphthalene ring system replaces the quinoline unit of IQ. The activity of cIQ in Ames Salmonella typhimurium tester strain TA98 is known to be 4-5 orders of magnitude lower than IQ. cIQ undergoes efficient bioactivation with rat liver microsomes. The C8-dGuo adduct was formed when calf thymus DNA was treated with the N-hydroxy-cIQ metabolite and either acetic anhydride or extracts from cells that overexpress N-acetyl transferase (NAT). These studies indicate that bioactivation, the stability of the N-hydroxylamine ester, and the reactivity of the nitrenium ion with DNA of cIQ are similar to IQ and that none of these factors account for the differences in mutagenic potency of these analogues in Ames assays. Oligonucleotides were synthesized that contain the C8-dGuo adduct of cIQ in the frameshift-prone CG-dinucleotide repeat unit of the NarI recognition sequence. We have examined the in vitro translesion synthesis of this adduct and have found it to be a strong replication block to Escherichia coli DNA polymerase I, Klenow fragment exo(-) (Kf(-)), E. coli DNA polymerase II exo(-) (pol II(-)), and Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4). Previous studies by Fuchs and co-workers identified E. coli pol II as the polymerase responsible for two-base deletions of the C8-dGuo adduct of N-acetyl-2-aminofluorene in the NarI sequence. Our observation that pol II is strongly inhibited by the C8-dGuo adduct of cIQ suggests that one of the other SOS inducible polymerases (E. coli pol IV or pol V) is required for its bypass, and this accounts for the greatly attenuated mutagenicity in the Ames assays as compared with IQ.


Asunto(s)
Bencimidazoles/metabolismo , Bencimidazoles/farmacología , ADN/metabolismo , Mutágenos/metabolismo , Mutágenos/farmacología , Animales , Bencimidazoles/química , Carcinógenos/química , Carcinógenos/metabolismo , Carcinógenos/farmacología , Bovinos , Replicación del ADN/efectos de los fármacos , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Mutágenos/química , Resonancia Magnética Nuclear Biomolecular , Quinolinas/química , Quinolinas/metabolismo , Quinolinas/farmacología , Ratas , Ratas Sprague-Dawley
8.
Nucleic Acids Res ; 36(12): 4128-36, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18550580

RESUMEN

Crotonaldehyde is a representative alpha,beta-unsaturated aldehyde endowed of mutagenic and carcinogenic properties related to its propensity to react with DNA. Cyclic crotonaldehyde-derived deoxyguanosine (CrA-PdG) adducts can undergo ring opening in duplex DNA to yield a highly reactive aldehydic moiety. Here, we demonstrate that site-specifically modified DNA oligonucleotides containing a single CrA-PdG adduct can form crosslinks with topoisomerase I (Top1), both directly and indirectly. Direct covalent complex formation between the CrA-PdG adduct and Top1 is detectable after reduction with sodium cyanoborohydride, which is consistent with the formation of a Schiff base between Top1 and the ring open aldehyde form of the adduct. In addition, we show that the CrA-PdG adduct alters the cleavage and religation activities of Top1. It suppresses Top1 cleavage complexes at the adduct site and induces both reversible and irreversible cleavage complexes adjacent to the CrA-PdG adduct. The formation of stable DNA-Top1 crosslinks and the induction of Top1 cleavage complexes by CrA-PdG are mutually exclusive. Lastly, we found that crotonaldehyde induces the formation of DNA-Top1 complexes in mammalian cells, which suggests a potential relationship between formation of DNA-Top1 crosslinks and the mutagenic and carcinogenic properties of crotonaldehyde.


Asunto(s)
Aductos de ADN/química , ADN-Topoisomerasas de Tipo I/química , Aldehídos/farmacología , Línea Celular , ADN-Topoisomerasas de Tipo I/metabolismo , Humanos , Oligodesoxirribonucleótidos/química , Estereoisomerismo
9.
Biochemistry ; 48(2): 471-80, 2009 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-19108641

RESUMEN

M(1)dG (3-(2'-deoxy-beta-d-erythro-pentofuranosyl)pyrimido[1,2-a]purin-10(3H)-one) lesions are mutagenic in bacterial and mammalian cells, leading to base substitutions (mostly M(1)dG to dT and M(1)dG to dA) and frameshift mutations. M(1)dG is produced endogenously through the reaction of peroxidation products, base propenal or malondialdehyde, with deoxyguanosine residues in DNA. The mutagenicity of M(1)dG in Escherichia coli is dependent on the SOS response, specifically the umuC and umuD gene products, suggesting that mutagenic lesion bypass occurs by the action of translesion DNA polymerases, like DNA polymerase V. Bypass of DNA lesions by translesion DNA polymerases is conserved in bacteria, yeast, and mammalian cells. The ability of recombinant human DNA polymerase eta to synthesize DNA across from M(1)dG was studied. M(1)dG partially blocked DNA synthesis by polymerase eta. Using steady-state kinetics, we found that insertion of dCTP was the least favored insertion product opposite the M(1)dG lesion (800-fold less efficient than opposite dG). Extension from M(1)dG.dC was equally as efficient as from control primer-templates (dG.dC). dATP insertion opposite M(1)dG was the most favored insertion product (8-fold less efficient than opposite dG), but extension from M(1)dG.dA was 20-fold less efficient than dG.dC. The sequences of full-length human DNA polymerase eta bypass products of M(1)dG were determined by LC-ESI/MS/MS. Bypass products contained incorporation of dA (52%) or dC (16%) opposite M(1)dG or -1 frameshifts at the lesion site (31%). Human DNA polymerase eta bypass may lead to M(1)dG to dT and frameshift but likely not M(1)dG to dA mutations during DNA replication.


Asunto(s)
Aductos de ADN/química , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxiguanosina/química , Bacteriófago T4/enzimología , Disparidad de Par Base , Secuencia de Bases , ADN Polimerasa Dirigida por ADN/genética , Desoxiguanosina/genética , Desoxiguanosina/metabolismo , Escherichia coli/enzimología , Humanos , Cinética , Mutagénesis Sitio-Dirigida , Fosforilación , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Nucleósidos de Purina , Proteínas Recombinantes/metabolismo , Moldes Genéticos , Uracil-ADN Glicosidasa/metabolismo
10.
J Am Chem Soc ; 131(24): 8416-24, 2009 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-19530727

RESUMEN

Acrolein reacts with dG to form hydroxylated 1,N(2)-propanodeoxyguanosine (OH-PdG) adducts. Most abundant are the epimeric 3-(2-deoxy-beta-D-erythro-pentofuranosyl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2a] purin-10(3H)-ones, commonly referred to as the gamma-OH-PdG adducts. When placed complementary to deoxycytosine in duplex DNA, these undergo rearrangement to the N(2)-(3-oxopropyl)-dG aldehyde. The latter forms diastereomeric interstrand N(2)-dG:N(2)-dG cross-links in the 5'-CpG-3' sequence. Here we report the structure of the stereochemically favored (R)-gamma-hydroxytrimethylene N(2)-dG:N(2)-dG interstrand DNA cross-link in 5'-d(G(1)C(2)T(3)A(4)G(5)C(6)X(7)A(8)G(9)T(10)C(11)C(12))-3' x 5'-d(G(13)G(14)A(15)C(16)T(17)C(18)Y(19)C(20)T(21)A(22)G(23)C(24))-3' (X(7) is the dG linked to the alpha-carbon of the carbinolamine linkage, and Y(19) is the dG linked to the gamma-carbon of the carbinolamine linkage; the cross-link is in the 5'-CpG-3' sequence). The structure was characterized using isotope-edited (15)N nuclear Overhauser enhancement spectroscopy heteronuclear single quantum correlation (NOESY-HSQC) NMR, in which the exocyclic amines at X(7) or Y(19) were (15)N-labeled. Analyses of NOE intensities involving Y(19) N(2)H indicated that the (R)-gamma-hydroxytrimethylene linkage was the major cross-link species, constituting 80-90% of the cross-link. The X(7) and Y(19) imino resonances were observed at 65 degrees C. Additionally, for the 5'-neighbor base pair G(5) x C(20), the G(5) imino resonance remained sharp at 55 degrees C but broadened at 65 degrees C. In contrast, for the 3'-neighbor A(8) x T(17) base pair, the T(17) imino resonance was severely broadened at 55 degrees C. Structural refinement using NOE distance restraints obtained from isotope-edited (15)N NOESY-HSQC data indicated that the (R)-gamma-hydroxytrimethylene linkage maintained the C(6) x Y(19) and X(7) x C(18) base pairs with minimal structural perturbations. The (R)-gamma-hydroxytrimethylene linkage was located in the minor groove. The X(7) N(2) and Y(19) N(2) atoms were in the gauche conformation with respect to the linkage, which maintained Watson-Crick hydrogen bonding of the cross-linked base pairs. The anti conformation of the hydroxyl group with respect to C(alpha) of the tether minimized steric interaction and, more importantly, allowed the formation of a hydrogen bond between the hydroxyl group and C(20) O(2) located in the 5'-neighboring base pair G(5) x C(20). The formation of this hydrogen bond may, in part, explain the thermal stability of this carbinolamine interstrand cross-link and the stereochemical preference for the (R) configuration of the cross-link.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Ciclopropanos/química , Aductos de ADN/química , ADN/química , Desoxiguanosina/análogos & derivados , Emparejamiento Base , Islas de CpG , Desoxiguanosina/química , Enlace de Hidrógeno , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación de Ácido Nucleico , Estereoisomerismo , Termodinámica
11.
Acc Chem Res ; 41(7): 793-804, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18500830

RESUMEN

Significant levels of the 1, N(2)-gamma-hydroxypropano-dG adducts of the alpha,beta-unsaturated aldehydes acrolein, crotonaldehyde, and 4-hydroxy-2E-nonenal (HNE) have been identified in human DNA, arising from both exogenous and endogenous exposures. They yield interstrand DNA cross-links between guanines in the neighboring C.G and G.C base pairs located in 5'-CpG-3' sequences, as a result of opening of the 1,N(2)-gamma-hydroxypropano-dG adducts to form reactive aldehydes that are positioned within the minor groove of duplex DNA. Using a combination of chemical, spectroscopic, and computational methods, we have elucidated the chemistry of cross-link formation in duplex DNA. NMR spectroscopy revealed that, at equilibrium, the acrolein and crotonaldehyde cross-links consist primarily of interstrand carbinolamine linkages between the exocyclic amines of the two guanines located in the neighboring C.G and G.C base pairs located in 5'-CpG-3' sequences, that maintain the Watson-Crick hydrogen bonding of the cross-linked base pairs. The ability of crotonaldehyde and HNE to form interstrand cross-links depends upon their common relative stereochemistry at the C6 position of the 1,N(2)-gamma-hydroxypropano-dG adduct. The stereochemistry at this center modulates the orientation of the reactive aldehyde within the minor groove of the double-stranded DNA, either facilitating or hindering the cross-linking reactions; it also affects the stabilities of the resulting diastereoisomeric cross-links. The presence of these cross-links in vivo is anticipated to interfere with DNA replication and transcription, thereby contributing to the etiology of human disease. Reduced derivatives of these cross-links are useful tools for studying their biological processing.


Asunto(s)
Aldehídos/química , Reactivos de Enlaces Cruzados/química , Aductos de ADN/química , Ambiente , Peroxidación de Lípido , Amino Alcoholes/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Oligonucleótidos/química , Temperatura de Transición
12.
J Am Chem Soc ; 130(33): 10898-906, 2008 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-18661996

RESUMEN

trans-4-Hydroxynonenal (HNE) is a peroxidation product of omega-6 polyunsaturated fatty acids. The Michael addition of deoxyguanosine to HNE yields four diastereomeric exocyclic 1,N(2)-dG adducts. The corresponding acrolein- and crotonaldehyde-derived exocyclic 1,N(2)-dG adducts undergo ring-opening to N(2)-dG aldehydes, placing the aldehyde functionalities into the minor groove of DNA. The acrolein- and the 6R-crotonaldehyde-derived exocyclic 1,N(2)-dG adducts form interstrand N(2)-dG:N(2)-dG cross-links in the 5'-CpG-3' sequence context. Only the HNE-derived exocyclic 1,N(2)-dG adduct of (6S,8R,11S) stereochemistry forms interstrand N(2)-dG:N(2)-dG cross-links in the 5'-CpG-3' sequence context. Moreover, as compared to the exocyclic 1,N(2)-dG adducts of acrolein and crotonaldehyde, the cross-linking reaction is slow (Wang, H.; Kozekov, I. D.; Harris, T. M.; Rizzo, C. J. J. Am. Chem. Soc. 2003, 125, 5687-5700). Accordingly, the chemistry of the HNE-derived exocyclic 1,N(2)-dG adduct of (6S,8R,11S) stereochemistry has been compared with that of the (6R,8S,11R) adduct, when incorporated into 5'-d(GCTAGCXAGTCC)-3'.5'-d(GGACTCGCTAGC)-3', containing the 5'-CpG-3' sequence (X = HNE-dG). When placed complementary to dC in this duplex, both adducts open to the corresponding N(2)-dG aldehydic rearrangement products, suggesting that the formation of the interstrand cross-link by the exocyclic 1,N(2)-dG adduct of (6S,8R,11S) stereochemistry, and the lack of cross-link formation by the exocyclic 1,N(2)-dG adduct of (6R,8S,11R) stereochemistry, is not attributable to inability to undergo ring-opening to the aldehydes in duplex DNA. Instead, these aldehydic rearrangement products exist in equilibrium with stereoisomeric cyclic hemiacetals. The latter are the predominant species present at equilibrium. The trans configuration of the HNE H6 and H8 protons is preferred. The presence of these cyclic hemiacetals in duplex DNA is significant as they mask the aldehyde species necessary for interstrand cross-link formation.


Asunto(s)
Aldehídos/química , Citosina/química , Aductos de ADN/química , ADN/química , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Reordenamiento Génico , Espectroscopía de Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/normas , Conformación de Ácido Nucleico , Nucleótidos/química , Estándares de Referencia , Sensibilidad y Especificidad , Estereoisomerismo
13.
Chem Res Toxicol ; 21(10): 1983-90, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18788757

RESUMEN

DNA-protein cross-links (adducts) are formed in cellular DNA under a variety of conditions, particularly following exposure to an alpha,beta-unsaturated aldehyde, acrolein. DNA-protein cross-links are subject to repair or damage-tolerance processes. These adducts serve as substrates for proteolytic degradation, yielding DNA-peptide lesions that have been shown to be actively repaired by the nucleotide excision repair complex. Alternatively, DNA-peptide cross-links can be subjected to replication bypass. We present new evidence about the capabilities of DNA polymerases to synthesize DNA past such cross-links. DNAs were constructed with site-specific cross-links, in which either a tetrapeptide or a dodecylpeptide was covalently attached at the N (2) position of guanine via an acrolein adduct, and replication bypass assays were carried out with members of the DinB family of polymerases, human polymerase (pol) kappa, Escherichia coli pol IV, and various E. coli polymerases that do not belong to the DinB family. Pol kappa was able to catalyze both the incorporation and the extension steps with an efficiency that was qualitatively indistinguishable from control (undamaged) substrates. Fidelity was comparable on all of these substrates, suggesting that pol kappa would have a role in the low mutation frequency associated with replication of these adducts in mammalian cells. When the E. coli orthologue of pol kappa, damage-inducible DNA polymerase, pol IV, was analyzed on the same substrates, pause sites were detected opposite and three nucleotides beyond the site of the lesion, with incorporation opposite the lesion being accurate. In contrast, neither E. coli replicative polymerase, pol III, nor E. coli damage-inducible polymerases, pol II and pol V, could efficiently incorporate a nucleotide opposite the DNA-peptide cross-links. Consistent with a role for pol IV in tolerance of these lesions, the replication efficiency of DNAs containing DNA-peptide cross-links was greatly reduced in pol IV-deficient cells. Collectively, these data indicate an important role for the DinB family of polymerases in tolerance mechanisms of N (2)-guanine-linked DNA-peptide cross-links.


Asunto(s)
Acroleína/farmacología , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Proteínas de Escherichia coli/metabolismo , Péptidos/metabolismo , Reactivos de Enlaces Cruzados/química , ADN/biosíntesis , ADN/genética , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/clasificación , Nucleótidos de Desoxiguanina/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/clasificación , Vectores Genéticos/genética , Humanos , Estructura Molecular , Péptidos/química , Plásmidos/genética
14.
Mutat Res ; 637(1-2): 161-72, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17868748

RESUMEN

Current data suggest that DNA-peptide crosslinks are formed in cellular DNA as likely intermediates in the repair of DNA-protein crosslinks. In addition, a number of naturally occurring peptides are known to efficiently conjugate with DNA, particularly through the formation of Schiff-base complexes at aldehydic DNA adducts and abasic DNA sites. Since the potential role of DNA-peptide crosslinks in promoting mutagenesis is not well elucidated, here we report on the mutagenic properties of Schiff-base-mediated DNA-peptide crosslinks in mammalian cells. Site-specific DNA-peptide crosslinks were generated by covalently trapping a lysine-tryptophan-lysine-lysine peptide to the N(6) position of deoxyadenosine (dA) or the N(2) position of deoxyguanosine (dG) via the aldehydic forms of acrolein-derived DNA adducts (gamma-hydroxypropano-dA or gamma-hydroxypropano-dG, respectively). In order to evaluate the potential of DNA-peptide crosslinks to promote mutagenesis, we inserted the modified oligodeoxynucleotides into a single-stranded pMS2 shuttle vector, replicated these vectors in simian kidney (COS-7) cells and tested the progeny DNAs for mutations. Mutagenic analyses revealed that at the site of modification, the gamma-hydroxypropano-dA-mediated crosslink induced mutations at only approximately 0.4%. In contrast, replication bypass of the gamma-hydroxypropano-dG-mediated crosslink resulted in mutations at the site of modification at an overall frequency of approximately 8.4%. Among the types of mutations observed, single base substitutions were most common, with a prevalence of G to T transversions. Interestingly, while covalent attachment of lysine-tryptophan-lysine-lysine at gamma-hydroxypropano-dG caused an increase in mutation frequencies relative to gamma-hydroxypropano-dG, similar modification of gamma-hydroxypropano-dA resulted in decreased levels of mutations. Thus, certain DNA-peptide crosslinks can be mutagenic, and their potential to cause mutations depends on the site of peptide attachment. We propose that in order to avoid error-prone replication, proteolytic degradation of proteins covalently attached to DNA and subsequent steps of DNA repair should be tightly coordinated.


Asunto(s)
Acroleína/farmacología , Aductos de ADN/efectos de los fármacos , Daño del ADN , Mutagénesis , Animales , Células COS , Chlorocebus aethiops , Reactivos de Enlaces Cruzados , Desoxiadenosinas/química , Desoxiguanosina/química , Péptidos , Transfección
15.
Environ Mol Mutagen ; 51(6): 625-34, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20577992

RESUMEN

Trans-4-Hydroxynonenal (HNE) is a peroxidation product of omega-6 polyunsaturated fatty acids. Michael addition of HNE to deoxyguanosine yields four diastereomeric 1,N(2)-dG adducts. The adduct of (6S,8R,11S) stereochemistry forms interstrand N(2)-dG:N(2)-dG cross-links in the 5'-CpG-3' sequence. It has been compared with the (6R,8S,11R) adduct, incorporated into 5'-d(GCTAGCXAGTCC)-3' . 5'-d(GGACTCGCTAGC)-3', containing the 5'-CpG-3' sequence (X = HNE-dG). Both adducts rearrange in DNA to N(2)-dG aldehydes. These aldehydes exist in equilibrium with diastereomeric cyclic hemiacetals, in which the latter predominate at equilibrium. These cyclic hemiacetals mask the aldehydes, explaining why DNA cross-linking is slow compared to related 1,N(2)-dG adducts formed by acrolein and crotonaldehyde. Both the (6S,8R,11S) and (6R,8S,11R) cyclic hemiacetals are located within the minor groove. However, the (6S,8R,11S) cyclic hemiacetal orients in the 5'-direction, while the (6R,8S,11R) cyclic hemiacetal orients in the 3'-direction. The conformations of the diastereomeric N(2)-dG aldehydes, which are the reactive species involved in DNA cross-link formation, have been calculated using molecular mechanics methods. The (6S,8R,11S) aldehyde orients in the 5'-direction, while the (6R,8S,11R) aldehyde orients in the 3'-direction. This suggests a kinetic basis to explain, in part, why the (6S,8R,11S) HNE adduct forms interchain cross-links in the 5'-CpG-3' sequence, whereas (6R,8S,11R) HNE adduct does not. The presence of these cross-links in vivo is anticipated to interfere with DNA replication and transcription, thereby contributing to the etiology of human disease.


Asunto(s)
Aldehídos/farmacología , Reactivos de Enlaces Cruzados/farmacología , Reparación del ADN/efectos de los fármacos , ADN/efectos de los fármacos , Humanos , Estructura Molecular
16.
J Biol Chem ; 283(25): 17075-82, 2008 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-18434313

RESUMEN

Although there exists compelling genetic evidence for a homologous recombination-independent pathway for repair of interstrand cross-links (ICLs) involving translesion synthesis (TLS), biochemical support for this model is lacking. To identify DNA polymerases that may function in TLS past ICLs, oligodeoxynucleotides were synthesized containing site-specific ICLs in which the linkage was between N(2)-guanines, similar to cross-links formed by mitomycin C and enals. Here, data are presented that mammalian cell replication of DNAs containing these lesions was approximately 97% accurate. Using a series of oligodeoxynucleotides that mimic potential intermediates in ICL repair, we demonstrate that human polymerase (pol) kappa not only catalyzed accurate incorporation opposite the cross-linked guanine but also replicated beyond the lesion, thus providing the first biochemical evidence for TLS past an ICL. The efficiency of TLS was greatly enhanced by truncation of both the 5 ' and 3 ' ends of the nontemplating strand. Further analyses showed that although yeast Rev1 could incorporate a dCTP opposite the cross-linked guanine, no evidence was found for TLS by pol zeta or a pol zeta/Rev1 combination. Because pol kappa was able to bypass these ICLs, biological evidence for a role for pol kappa in tolerating the N(2)-N(2)-guanine ICLs was sought; both cell survival and chromosomal stability were adversely affected in pol kappa-depleted cells following mitomycin C exposure. Thus, biochemical data and cellular studies both suggest a role for pol kappa in the processing of N(2)-N(2)-guanine ICLs.


Asunto(s)
ADN Polimerasa Dirigida por ADN/fisiología , Guanina/química , Animales , Secuencia de Bases , Células COS , Supervivencia Celular , Chlorocebus aethiops , Cromosomas/ultraestructura , Reactivos de Enlaces Cruzados/química , Reparación del ADN , ADN Polimerasa Dirigida por ADN/química , Datos de Secuencia Molecular , Mutágenos , Oligonucleótidos/química , Reproducibilidad de los Resultados
17.
Chem Res Toxicol ; 19(11): 1467-74, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17112234

RESUMEN

Malondialdehyde (MDA) and its reactive equivalent, base propenal, are products of oxidative damage to lipids and DNA, respectively; they are mutagenic in bacterial and mammalian systems, and MDA is carcinogenic in rats. MDA adducts of deoxyguanosine (M1dG), deoxyadenosine (OPdA), and deoxycytidine (OPdC) have been characterized. We have developed site-specific syntheses of M1dG and OPdA adducted oligonucleotides that rely on a postsynthetic modification strategy. This work provides an alternative route to the M1dG adducted oligonucleotide and, to date, the only viable strategy for the site-specific synthesis of OPdA-modified oligonucleotides. The stability of the modified oligonucleotides was examined by UV thermal melting studies (Tm). In contrast to the M1dG adduct, OPdA caused very little change in the Tm.


Asunto(s)
Desoxiadenosinas/química , Desoxiguanosina/química , Malondialdehído/química , Oligonucleótidos/síntesis química , Estructura Molecular
18.
Chem Res Toxicol ; 19(8): 1019-29, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16918240

RESUMEN

The conformation of the crotonaldehyde-derived N(2)-[3-oxo-1(S)-methyl-propyl]-dG adduct in the oligodeoxynucleotide 5'-d(G(1)C(2)T(3)A(4)G(5)C(6)X(7)A(8)G(9)T(10)C(11)C(12))-3'.5'-d(G(13)G(14)A(15)C(16)T(17)C(18)G(19)C(20)T(21)A(22)G(23)C(2)(4))-3', where X = N(2)-[3-oxo-1(S)-methyl-propyl]-dG, is reported. This adduct arises from opening of the cyclic N(2)-(S-alpha-CH(3)-gamma-OH-1,N(2)-propano-2')-dG adduct when placed opposite dC in duplex DNA. This oligodeoxynucleotide contains the 5'-CpG-3' sequence in which the N(2)-(R-alpha-CH(3)-gamma-OH-1,N(2)-propano-2')-dG but not the N(2)-(S-alpha-CH(3)-gamma-OH-1,N(2)-propano-2')-dG adduct preferentially formed an interstrand carbinolamine cross-link [Kozekov, I. D., Nechev, L. V., Moseley, M. S., Harris, C. M., Rizzo, C. J., Stone, M. P., and Harris, T. M. (2003) J. Am. Chem. Soc. 125, 50-61; Cho, Y.-J., Wang, H., Kozekov, I. D., Kurtz, A. J., Jacob, J., Voehler, M., Smith, J., Harris, T. M., Lloyd, R. S., Rizzo, C. J., and Stone, M. P. (2006) Chem. Res. Toxicol. 19, 195-208]. Analysis of (1)H NOE data, chemical shift perturbations, and deoxyribose pseudorotations and backbone torsion angles suggested the presence of a stable and ordered DNA conformation at pH 9.3 and 30 degrees C, with minimal conformational perturbation. The spectral line widths of the adduct protons were comparable to those of the oligodeoxynucleotide, suggesting that the correlation times of these protons were similar to those of the overall duplex. The crotonaldehydic-derived methyl protons showed NOEs in the 5'-direction to C(18) H1', G(19) H1', and G(19) H4' in the complementary strand of the duplex. The aldehyde proton of the adduct exhibited NOEs in the 3'-direction to A(8) H1' and A(8) H4' in the modified strand. All of these NOEs involved DNA protons facing the minor groove. Molecular dynamics calculations, restrained by distances and torsion angles derived from the NMR data, revealed that within the minor groove, the aldehyde of the N(2)-[3-oxo-1(S)-methyl-propyl]-dG adduct oriented in the 3'-direction, while the 1(S) methyl group oriented in the 5'-direction. This positioned the aldehyde distal to the G(19) exocyclic amine and provided a rationale as to why the N(2)-(S-alpha-CH(3)-gamma-OH-1,N(2)-propano-2')-dG adduct generated interstrand cross-links less efficiently than did the N(2)-(R-alpha-CH(3)-gamma-OH-1,N(2)-propano-2')-dG adduct.


Asunto(s)
Aldehídos/química , Islas de CpG , Reactivos de Enlaces Cruzados/química , Aductos de ADN/química , ADN/química , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Modelos Moleculares , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Oligodesoxirribonucleótidos/síntesis química , Oligodesoxirribonucleótidos/química , Protones , Estereoisomerismo
19.
J Am Chem Soc ; 127(50): 17686-96, 2005 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-16351098

RESUMEN

The interstrand N2,N2-dG DNA cross-linking chemistry of the acrolein-derived gamma-OH-1,N2-propanodeoxyguanosine (gamma-OH-PdG) adduct in the 5'-CpG-3' sequence was monitored within a dodecamer duplex by NMR spectroscopy, in situ, using a series of site-specific 13C- and 15N-edited experiments. At equilibrium 40% of the DNA was cross-linked, with the carbinolamine form of the cross-link predominating. The cross-link existed in equilibrium with the non-crosslinked N2-(3-oxo-propyl)-dG aldehyde and its geminal diol hydrate. The ratio of aldehyde/diol increased at higher temperatures. The 1,N2-dG cyclic adduct was not detected. Molecular modeling suggested that the carbinolamine linkage should be capable of maintaining Watson-Crick hydrogen bonding at both of the tandem C x G base pairs. In contrast, dehydration of the carbinolamine cross-link to an imine (Schiff base) cross-link, or cyclization of the latter to form a pyrimidopurinone cross-link, was predicted to require disruption of Watson-Crick hydrogen bonding at one or both of the tandem cross-linked C x G base pairs. When the gamma-OH-PdG adduct contained within the 5'-CpG-3' sequence was instead annealed into duplex DNA opposite T, a mixture of the 1,N2-dG cyclic adduct, the aldehyde, and the diol, but no cross-link, was observed. With this mismatched duplex, reaction with the tetrapeptide KWKK formed DNA-peptide cross-links efficiently. When annealed opposite dA, gamma-OH-PdG remained as the 1,N2-dG cyclic adduct although transient epimerization was detected by trapping with the peptide KWKK. The results provide a rationale for the stability of interstrand cross-links formed by acrolein and perhaps other alpha,beta-unsaturated aldehydes. These sequence-specific carbinolamine cross-links are anticipated to interfere with DNA replication and contribute to acrolein-mediated genotoxicity.


Asunto(s)
Acroleína/química , Islas de CpG , Aductos de ADN/química , ADN/química , Desoxiguanosina/análogos & derivados , Acroleína/análogos & derivados , Isótopos de Carbono , Reactivos de Enlaces Cruzados/química , Desoxiguanosina/química , Enlace de Hidrógeno , Marcaje Isotópico , Modelos Moleculares , Isótopos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular/métodos , Oligonucleótidos/síntesis química , Oligonucleótidos/química , Oligopéptidos/química , Estereoisomerismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA