RESUMEN
Current therapies for chronic pain can have insufficient efficacy and lead to side effects, necessitating research of novel targets against pain. Although originally identified as an oncogene, Tropomyosin-related kinase A (TrkA) is linked to pain and elevated levels of NGF (the ligand for TrkA) are associated with chronic pain. Antibodies that block TrkA interaction with its ligand, NGF, are in clinical trials for pain relief. Here, we describe the identification of TrkA-specific inhibitors and the structural basis for their selectivity over other Trk family kinases. The X-ray structures reveal a binding site outside the kinase active site that uses residues from the kinase domain and the juxtamembrane region. Three modes of binding with the juxtamembrane region are characterized through a series of ligand-bound complexes. The structures indicate a critical pharmacophore on the compounds that leads to the distinct binding modes. The mode of interaction can allow TrkA selectivity over TrkB and TrkC or promiscuous, pan-Trk inhibition. This finding highlights the difficulty in characterizing the structure-activity relationship of a chemical series in the absence of structural information because of substantial differences in the interacting residues. These structures illustrate the flexibility of binding to sequences outside of-but adjacent to-the kinase domain of TrkA. This knowledge allows development of compounds with specificity for TrkA or the family of Trk proteins.
Asunto(s)
Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Receptor trkA/antagonistas & inhibidores , Receptor trkA/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Humanos , Cinética , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Modelos Moleculares , Conformación Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Receptor trkA/genética , Receptor trkB/antagonistas & inhibidores , Receptor trkB/química , Receptor trkB/genética , Receptor trkC/antagonistas & inhibidores , Receptor trkC/química , Receptor trkC/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/genética , Relación Estructura-Actividad , Resonancia por Plasmón de SuperficieRESUMEN
Patients with peripheral nerve injury, viral infection or metabolic disorder often suffer neuropathic pain due to inadequate pharmacological options for relief. Developing novel therapies has been challenged by incomplete mechanistic understanding of the cellular microenvironment in sensory nerve that trigger the emergence and persistence of pain. In this study, we report a high resolution transcriptomics map of the cellular heterogeneity of naïve and injured rat sensory nerve covering more than 110,000 individual cells. Annotation reveals distinguishing molecular features of multiple major cell types totaling 45 different subtypes in naïve nerve and an additional 23 subtypes emerging after injury. Ligand-receptor analysis revealed a myriad of potential targets for pharmacological intervention. This work forms a comprehensive resource and unprecedented window into the cellular milieu underlying neuropathic pain and demonstrates that nerve injury is a dynamic process orchestrated by multiple cell types in both the endoneurial and epineurial nerve compartments.
Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Neuropatía Ciática , Ratas , Animales , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo , Nervio Ciático/lesiones , Ratas Sprague-Dawley , Ligandos , Análisis de la Célula Individual , Neuropatía Ciática/genética , Neuralgia/genética , Neuralgia/metabolismoRESUMEN
Toll-like receptors (TLRs) are sentinels of innate immunity that recognize pathogenic molecules and trigger inflammatory response. Because inflammatory mediators are detrimental to the host, the TLR response is regulated by feedback inhibition. Statins, the inhibitors of isoprenoid biosynthesis, have been shown to be potent modulators of TLR activity, and this modulation may provide insight regarding mechanisms of the feedback inhibition. In the present study, we examined feedback mechanisms that regulate TLR4 activity in astrocytes using statins to perturb postligational signaling. Astrocytic cultures established from newborn rat brains were exposed to lipopolysaccharide (LPS), the ligand for TLR4. The up-regulation of expression of genes encoding interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha (TNFalpha) was determined by real-time RT-PCR. Pretreatment of the cells with either atorvastatin or simvastatin enhanced the LPS-induced up-regulation of cytokine gene expression. The most profound enhancement of approximately 17-fold was observed for the Il-6 gene. The enhancements for the Tnfa and Il-1b genes were approximately 5- and 3.5-fold, respectively. Mevalonate fully reversed the effects of statins, indicating that these drugs act through the inhibition of isoprenoid synthesis. The inhibition of protein geranylgeranylation, but not protein farnesylation, mimicked the effects of statins, strongly indicating that the enhancement is mediated by the Rho proteins. In support of this notion, pretreatment of cells with toxin B, a specific inhibitor of the Rho proteins, also enhanced LPS-triggered up-regulation of the cytokine genes. These results indicate that the Rho proteins are involved in the activation of negative feedback inhibition of TLR4 signaling in astrocytes.
Asunto(s)
Astrocitos/metabolismo , Citocinas/genética , Expresión Génica/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Receptor Toll-Like 4/metabolismo , Animales , Astrocitos/efectos de los fármacos , Proteínas Bacterianas/farmacología , Toxinas Bacterianas/farmacología , Células Cultivadas , Retroalimentación Fisiológica , Lipopolisacáridos/farmacología , Ácido Mevalónico/farmacología , Prenilación de Proteína/fisiología , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas Lew , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Proteínas de Unión al GTP rho/metabolismoRESUMEN
BACKGROUND: NGF signaling through TrkA triggers pathways involved in a wide range of biological effects. Clinical trials targeting either NGF or TrkA are ongoing to treat various diseases in the areas of oncology, neuroscience, and for pain, but there is no described measure of target engagement of TrkA in these studies. NEW METHOD: We have developed custom ELISA assays to measure NGF-induced phosphorylation of TrkA specific for rodent and human receptors. Optimized tissue processing methods allow for detection in both the brain and in skin. In addition, TrkB and TrkC assays have been in established to evaluate selectivity against other neurotrophin receptors. RESULTS: In a preclinical NGF-induced pain model, we show that pre-dosing with a TrkA inhibitor prevents phosphorylation of TrkA in the skin at a dose that is efficacious in reversal of thermal hypersensitivity. In addition, we show data in non-human primate and human skin supporting the potential use of this approach to enable translational target engagement. Comparison with existing methods: Existing methods involve animal models expressing TrkA tumors or injection of over-expressing TrkA recombinant cells into animals. Our method can measure target engagement in both normal and disease tissues in preclinical animal models and human skin. CONCLUSIONS: We have developed methods to assess target engagement for drug programs aimed at disrupting NGF-induced TrkA signaling. This includes preclinical determination of selectivity against other neurotrophin receptors and estimation of functional peripheral restriction. Preliminary data supports this method can be translated into a clinical pharmacodynamic readout using human skin biopsies.
Asunto(s)
Analgésicos/farmacocinética , Ensayo de Inmunoadsorción Enzimática/métodos , Factor de Crecimiento Nervioso/metabolismo , Receptor trkA/antagonistas & inhibidores , Receptor trkA/metabolismo , Analgésicos/farmacología , Animales , Biomarcadores Farmacológicos/metabolismo , Biopsia , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Macaca mulatta , Masculino , Persona de Mediana Edad , Dolor/tratamiento farmacológico , Dolor/metabolismo , Fosforilación/efectos de los fármacos , Proyectos Piloto , Ratas , Receptor trkB/metabolismo , Receptor trkC/metabolismo , Transducción de Señal/efectos de los fármacos , Piel/efectos de los fármacos , Piel/metabolismoRESUMEN
We have identified several series of small molecule inhibitors of TrkA with unique binding modes. The starting leads were chosen to maximize the structural and binding mode diversity derived from a high throughput screen of our internal compound collection. These leads were optimized for potency and selectivity employing a structure based drug design approach adhering to the principles of ligand efficiency to maximize binding affinity without overly relying on lipophilic interactions. This endeavor resulted in the identification of several small molecule pan-Trk inhibitor series that exhibit high selectivity for TrkA/B/C versus a diverse panel of kinases. We have also demonstrated efficacy in both inflammatory and neuropathic pain models upon oral dosing. Herein we describe the identification process, hit-to-lead progression, and binding profiles of these selective pan-Trk kinase inhibitors.
Asunto(s)
Dolor Crónico/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Receptor trkA/antagonistas & inhibidores , Animales , Evaluación Preclínica de Medicamentos , Humanos , Indoles/química , Indoles/farmacocinética , Ligandos , Modelos Moleculares , Inhibidores de Proteínas Quinasas/farmacocinética , Pirimidinas/química , Pirimidinas/farmacocinética , Ratas , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Relación Estructura-Actividad , Triazoles/química , Triazoles/farmacocinética , Urea/análogos & derivados , Urea/química , Urea/farmacocinéticaRESUMEN
Toll-like receptors (TLRs) are sentinels of the innate immune system that recognize an array of exogenous and endogenous pathogenic molecules. The ligation of the receptors triggers inflammatory response necessary for pathogen elimination and for the healing process. In the present study we examined inflammatory response of astrocytes elicited by the ligation of TLR3 and TLR4. Astrocytic cultures established from newborn rat brains were exposed to double stranded RNA (dsRNA) and lipopolysaccharide (LPS), the ligands for TLR3 and TLR4, respectively. The expression of cytokine genes was determined by RNase protection assay, and the generation of nitric oxide (NO) was measured by Griess technique. Both ligands upregulated the expression of several cytokines (i.e., IL-1alpha, IL-1beta, IL-6, TNFalpha, GM-CSF, LTbeta, and TGFbeta3) and downregulated the expression of MIF, but have no effect on the expression of IL-2, IL-3, IL-4, IL-5, IL-10, TGFbeta1, TGFbeta2, TNFbeta, and IFNgamma. Although dsRNA upregulated the expression of IFNbeta, LPS did not indicating that the TRIF-dependent branch of TLR4 signaling is inactive in astrocytes. Proinflammatory response as seen from upregulated cytokine expression and NO generation reached a peak within the first day of exposure, and was subsequently abrogated. The cells also became refractory to subsequent stimulation by the ligands indicating the existence of negative feedback mechanisms that control proinflammatory response in astrocytes.