Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO Rep ; 24(10): e57084, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37691494

RESUMEN

Intestinal epithelial cells are covered by the brush border, which consists of densely packed microvilli. The Intermicrovillar Adhesion Complex (IMAC) links the microvilli and is required for proper brush border organization. Whether microvillus crosslinking is involved in the intestinal barrier function or colitis is currently unknown. We investigate the role of microvillus crosslinking in colitis in mice with deletion of the IMAC component CDHR5. Electron microscopy shows pronounced brush border defects in CDHR5-deficient mice. The defects result in severe mucosal damage after exposure to the colitis-inducing agent DSS. DSS increases the permeability of the mucus layer and brings bacteria in direct contact with the disorganized brush border of CDHR5-deficient mice. This correlates with bacterial invasion into the epithelial cell layer which precedes epithelial apoptosis and inflammation. Single-cell RNA sequencing data of patients with ulcerative colitis reveals downregulation of CDHR5 in enterocytes of diseased areas. Our results provide experimental evidence that a combination of microvillus crosslinking defects with increased permeability of the mucus layer sensitizes to inflammatory bowel disease.

2.
Cell Rep ; 43(6): 114308, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38829740

RESUMEN

Dendritic cell (DC) progenitors adapt their transcriptional program during development, generating different subsets. How chromatin modifications modulate these processes is unclear. Here, we investigate the impact of histone deacetylation on DCs by genetically deleting histone deacetylase 1 (HDAC1) or HDAC2 in hematopoietic progenitors and CD11c-expressing cells. While HDAC2 is not critical for DC development, HDAC1 deletion impairs pro-pDC and mature pDC generation and affects ESAM+cDC2 differentiation from tDCs and pre-cDC2s, whereas cDC1s are unchanged. HDAC1 knockdown in human hematopoietic cells also impairs cDC2 development, highlighting its crucial role across species. Multi-omics analyses reveal that HDAC1 controls expression, chromatin accessibility, and histone acetylation of the transcription factors IRF4, IRF8, and SPIB required for efficient development of cDC2 subsets. Without HDAC1, DCs switch immunologically, enhancing tumor surveillance through increased cDC1 maturation and interleukin-12 production, driving T helper 1-mediated immunity and CD8+ T cell recruitment. Our study reveals the importance of histone acetylation in DC development and anti-tumor immunity, suggesting DC-targeted therapeutic strategies for immuno-oncology.


Asunto(s)
Diferenciación Celular , Células Dendríticas , Histona Desacetilasa 1 , Células Dendríticas/metabolismo , Células Dendríticas/inmunología , Histona Desacetilasa 1/metabolismo , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Acetilación , Neoplasias/inmunología , Neoplasias/patología , Histonas/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Histona Desacetilasa 2/metabolismo , Interleucina-12/metabolismo
3.
EMBO Mol Med ; 15(7): e16758, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37226685

RESUMEN

FAM3C/ILEI is an important cytokine for tumor progression and metastasis. However, its involvement in inflammation remains elusive. Here, we show that ILEI protein is highly expressed in psoriatic lesions. Inducible keratinocyte-specific ILEI overexpression in mice (K5-ILEIind ) recapitulates many aspects of psoriasis following TPA challenge, primarily manifested by impaired epidermal differentiation and increased neutrophil recruitment. Mechanistically, ILEI triggers Erk and Akt signaling, which then activates STAT3 via Ser727 phosphorylation. Keratinocyte-specific ILEI deletion ameliorates TPA-induced skin inflammation. A transcriptomic ILEI signature obtained from the K5-ILEIind model shows enrichment in several signaling pathways also found in psoriasis and identifies urokinase as a targetable enzyme to counteract ILEI activity. Pharmacological inhibition of urokinase in TPA-induced K5-ILEIind mice results in significant improvement of psoriasiform symptoms by reducing ILEI secretion. The ILEI signature distinguishes psoriasis from healthy skin with uPA ranking among the top "separator" genes. Our study identifies ILEI as a key driver in psoriasis, indicates the relevance of ILEI-regulated genes for disease manifestation, and shows the clinical impact of ILEI and urokinase as novel potential therapeutic targets in psoriasis.


Asunto(s)
Psoriasis , Activador de Plasminógeno de Tipo Uroquinasa , Ratones , Animales , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Citocinas/metabolismo , Queratinocitos , Transducción de Señal
4.
Metabolites ; 12(3)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35323656

RESUMEN

Colorectal cancer (CRC) to date still ranks as one of the deadliest cancer entities globally, and despite recent advances, the incidence in young adolescents is dramatically increasing. Lipid metabolism has recently received increased attention as a crucial element for multiple aspects of carcinogenesis and our knowledge of the underlying mechanisms is steadily growing. However, the mechanism how fatty acid metabolism contributes to CRC is still not understood in detail. In this review, we aim to summarize our vastly growing comprehension and the accompanied complexity of cellular fatty acid metabolism in CRC by describing inputs and outputs of intracellular free fatty acid pools and how these contribute to cancer initiation, disease progression and metastasis. We highlight how different lipid pathways can contribute to the aggressiveness of tumors and affect the prognosis of patients. Furthermore, we focus on the role of lipid metabolism in cell communication and interplay within the tumor microenvironment (TME) and beyond. Understanding these interactions in depth might lead to the discovery of novel markers and new therapeutic interventions for CRC. Finally, we discuss the crucial role of fatty acid metabolism as new targetable gatekeeper in colorectal cancer.

5.
Curr Protoc Stem Cell Biol ; 55(1): e127, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32956561

RESUMEN

The reproducibility of stem cell research relies on the constant availability of quality-controlled cells. As the quality of human induced pluripotent stem cells (hiPSCs) can deteriorate in the course of a few passages, cell banking is key to achieve consistent results and low batch-to-batch variation. Here, we provide a cost-efficient route to generate master and working cell banks for basic research projects. In addition, we describe minimal protocols for quality assurance including tests for sterility, viability, pluripotency, and genetic integrity. © 2020 The Authors. Basic Protocol 1: Expansion of hiPSCs Basic Protocol 2: Cell banking of hiPSCs Support Protocol 1: Pluripotency assessment by flow cytometry Support Protocol 2: Thawing control: Viability and sterility Support Protocol 3: Potency, viral clearance, and pluripotency: Spontaneous differentiation and qRT-PCR Support Protocol 4: Identity: Short tandem repeat analysis.


Asunto(s)
Criopreservación/métodos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes/citología , Línea Celular , Humanos , Control de Calidad , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA