RESUMEN
Chaperone-mediated autophagy (CMA) is a selective form of autophagy that contributes to the maintenance of cellular homeostasis. CMA activity declines with age in most tissues and systems, including the immune system, due to a reduction in levels of lysosome-associated membrane protein type 2A (LAMP2A), an essential CMA component. In this study, we show that overexpressing a copy of hLAMP2A within T cells since middle-age can prevent some of their age-associated loss of function. Our data support the idea that preserving LAMP2A expression with age through genetic means leads to enhanced proliferative responses, decreased number of regulatory T cell populations, and down-regulated expression of inhibitory receptors by T cells. During aging, elevated numbers of these immunosuppressive T cell populations significantly contribute to the age-associated downregulation of T cell responses. Using comparative proteomics, we confirm that preservation of CMA activity in old mice prevents age-related changes in both the resting and the activated T cell proteome. We also explore the effect of using first-in-class small molecule activators of CMA and demonstrate improved T cell response upon their administration to old mice. We conclude that sustaining CMA activity constitutes a potentially viable therapeutic approach to improving T cell function with age.
Asunto(s)
Envejecimiento , Autofagia Mediada por Chaperones , Proteína 2 de la Membrana Asociada a los Lisosomas , Animales , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Ratones , Envejecimiento/inmunología , Envejecimiento/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ratones Transgénicos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Ratones Endogámicos C57BL , Activación de LinfocitosRESUMEN
Chaperone-mediated autophagy (CMA) contributes to regulation of energy homeostasis by timely degradation of enzymes involved in glucose and lipid metabolism. Here, we report reduced CMA activity in vascular smooth muscle cells and macrophages in murine and human arteries in response to atherosclerotic challenges. We show that in vivo genetic blockage of CMA worsens atherosclerotic pathology through both systemic and cell-autonomous changes in vascular smooth muscle cells and macrophages, the two main cell types involved in atherogenesis. CMA deficiency promotes dedifferentiation of vascular smooth muscle cells and a proinflammatory state in macrophages. Conversely, a genetic mouse model with up-regulated CMA shows lower vulnerability to proatherosclerotic challenges. We propose that CMA could be an attractive therapeutic target against cardiovascular diseases.
Asunto(s)
Aterosclerosis , Autofagia Mediada por Chaperones , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Autofagia Mediada por Chaperones/genética , Modelos Animales de Enfermedad , Lisosomas/metabolismo , RatonesRESUMEN
Olfactory sensory axons target well-defined intermediate targets in the zebrafish olfactory bulb called protoglomeruli well before they form odorant receptor-specific glomeruli. A subset of olfactory sensory neurons are labeled by expression of the or111-7:IRES:GAL4 transgene whose axons terminate in the central zone (CZ) protoglomerulus. Previous work has shown that some of these axons misproject to the more dorsal and anterior dorsal zone (DZ) protoglomerulus in the absence of Netrin 1/Dcc signaling. In search of additional cues that guide these axons to the CZ, we found that Semaphorin 3D (Sema3D) is expressed in the anterior bulb and acts as a repellent that pushes them towards the CZ. Further analysis indicates that Sema3D signaling is mediated through Nrp1a, while Nrp2b also promotes CZ targeting but in a Sema3D-independent manner. nrp1a, nrp2b and dcc transcripts are detected in or111-7 transgene-expressing neurons early in development and both Nrp1a and Dcc act cell-autonomously in sensory neurons to promote accurate targeting to the CZ. dcc and nrp1a double mutants have significantly more DZ misprojections than either single mutant, suggesting that the two signaling systems act independently and in parallel to direct a specific subset of sensory axons to their initial protoglomerular target.
Asunto(s)
Neuropilina-1/metabolismo , Neuropilina-2/metabolismo , Bulbo Olfatorio/citología , Vías Olfatorias/embriología , Neuronas Receptoras Olfatorias/citología , Pez Cebra/embriología , Animales , Señales (Psicología) , Receptor DCC , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Netrina-1 , Neuropilina-1/genética , Neuropilina-2/genética , Bulbo Olfatorio/crecimiento & desarrollo , Vías Olfatorias/fisiología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Semaforinas/biosíntesis , Semaforinas/genética , Semaforinas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
Intracellular degradation of proteins and organelles by the autophagy-lysosome system is essential for cellular quality control and energy homeostasis. Besides degradation, endolysosomal organelles can fuse with the plasma membrane and contribute to unconventional secretion. Here, we identify a function for mammalian SKP1 in endolysosomes that is independent of its established role as an essential component of the family of SCF/CRL1 ubiquitin ligases. We found that, under nutrient-poor conditions, SKP1 is phosphorylated on Thr131, allowing its interaction with V1 subunits of the vacuolar ATPase (V-ATPase). This event, in turn, promotes V-ATPase assembly to acidify late endosomes and enhance endolysosomal degradation. Under nutrient-rich conditions, SUMOylation of phosphorylated SKP1 allows its binding to and dephosphorylation by the PPM1B phosphatase. Dephosphorylated SKP1 interacts with SEC22B to promote unconventional secretion of the content of less acidified hybrid endosomal/autophagic compartments. Collectively, our study implicates SKP1 phosphorylation as a switch between autophagy and unconventional secretion in a manner dependent on cellular nutrient status.
Asunto(s)
Endosomas , ATPasas de Translocación de Protón Vacuolares , Autofagia , Membrana Celular/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , ATPasas de Translocación de Protón Vacuolares/química , HumanosRESUMEN
Chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI) are pathways for selective degradation of cytosolic proteins in lysosomes and late endosomes, respectively. These autophagic processes share as a first step the recognition of the same five-amino-acid motif in substrate proteins by the Hsc70 chaperone, raising the possibility of coordinated activity of both pathways. In this work, we show the existence of a compensatory relationship between CMA and eMI and identify a role for the chaperone protein Bag6 in triage and internalization of eMI substrates into late endosomes. Association and dynamics of Bag6 at the late endosome membrane change during starvation, a stressor that, contrary to other autophagic pathways, causes a decline in eMI activity. Collectively, these results show a coordinated function of eMI with CMA, identify the interchangeable subproteome degraded by these pathways, and start to elucidate the molecular mechanisms that facilitate the switch between them.
Asunto(s)
Autofagia Mediada por Chaperones , Microautofagia , Autofagia , Endosomas/metabolismo , Lisosomas/metabolismo , Chaperonas Moleculares/metabolismoRESUMEN
The term autophagy encompasses different pathways that route cytoplasmic material to lysosomes for degradation and includes macroautophagy, chaperone-mediated autophagy, and microautophagy. Since these pathways are crucial for degradation of aggregate-prone proteins and dysfunctional organelles such as mitochondria, they help to maintain cellular homeostasis. As post-mitotic neurons cannot dilute unwanted protein and organelle accumulation by cell division, the nervous system is particularly dependent on autophagic pathways. This dependence may be a vulnerability as people age and these processes become less effective in the brain. Here, we will review how the different autophagic pathways may protect against neurodegeneration, giving examples of both polygenic and monogenic diseases. We have considered how autophagy may have roles in normal CNS functions and the relationships between these degradative pathways and different types of programmed cell death. Finally, we will provide an overview of recently described strategies for upregulating autophagic pathways for therapeutic purposes.
Asunto(s)
Autofagia , Lisosomas , Apoptosis , Autofagia/fisiología , Encéfalo/metabolismo , Humanos , Neuronas/metabolismoRESUMEN
Autophagy is essential for protein quality control and regulation of the functional proteome. Failure of autophagy pathways with age contributes to loss of proteostasis in aged organisms and accelerates the progression of age-related diseases. In this work, we show that activity of endosomal microautophagy (eMI), a selective type of autophagy occurring in late endosomes, declines with age and identify the sub-proteome affected by this loss of function. Proteomics of late endosomes from old mice revealed an aberrant glycation signature for Hsc70, the chaperone responsible for substrate targeting to eMI. Age-related Hsc70 glycation reduces its stability in late endosomes by favoring its organization into high molecular weight protein complexes and promoting its internalization/degradation inside late endosomes. Reduction of eMI with age associates with an increase in protein secretion, as late endosomes can release protein-loaded exosomes upon plasma membrane fusion. Our search for molecular mediators of the eMI/secretion switch identified the exocyst-RalA complex, known for its role in exocytosis, as a novel physiological eMI inhibitor that interacts with Hsc70 and acts directly at the late endosome membrane. This inhibitory function along with the higher exocyst-RalA complex levels detected in late endosomes from old mice could explain, at least in part, reduced eMI activity with age. Interaction of Hsc70 with components of the exocyst-RalA complex places this chaperone in the switch from eMI to secretion. Reduced intracellular degradation in favor of extracellular release of undegraded material with age may be relevant to the spreading of proteotoxicity associated with aging and progression of proteinopathies.
Asunto(s)
Microautofagia , Proteoma , Envejecimiento , Animales , Autofagia/fisiología , Endosomas/metabolismo , Lisosomas/metabolismo , Ratones , Transporte de Proteínas , Proteoma/metabolismoRESUMEN
Endosomal microautophagy (eMI) is a type of autophagy that allows for the selective uptake and degradation of cytosolic proteins in late endosome/multi-vesicular bodies (LE/MVB). This process starts with the recognition of a pentapeptide amino acid KFERQ-like targeting motif in the substrate protein by the hsc70 chaperone, which then enables binding and subsequent uptake of the protein into the LE/MVB compartment. The recognition of a KFERQ-like motif by hsc70 is the same initial step in chaperone-mediated autophagy (CMA), a form of selective autophagy that degrades the hsc70-targeted proteins in lysosomes in a LAMP-2A dependent manner. The shared step of substrate recognition by hsc70, originally identified for CMA, makes it now necessary to differentiate between the two pathways. Here, we detail biochemical and imaging-based methods to track eMI activity in vitro with isolated LE/MVBs and in cells in culture using fluorescent reporters and highlight approaches to distinguish whether a protein is a substrate of eMI or CMA.
Asunto(s)
Lisosomas , Microautofagia , Animales , Autofagia , Endosomas , Proteínas del Choque Térmico HSC70RESUMEN
The causes of coagulopathy associated with coronavirus disease 2019 (COVID-19) are poorly understood. We aimed to investigate the relationship between von Willebrand factor (VWF) biomarkers, intravascular hemolysis, coagulation, and organ damage in COVID-19 patients and study their association with disease severity and mortality. We conducted a retrospective study of 181 hospitalized COVID-19 patients randomly selected with balanced distribution of survivors and nonsurvivors. Patients who died had significantly lower ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) activity, significantly elevated lactate dehydrogenase levels, significantly increased shistocyte/RBC fragment counts, and significantly elevated VWF antigen and activity levels compared with patients discharged alive. These biomarkers correlate with markedly elevated D-dimers. Additionally, only 30% of patients who had an ADAMTS13 activity level of less than 43% on admission survived, yet 60% of patients survived who had an ADAMTS13 activity level of greater than 43% on admission. In conclusion, COVID-19 may present with low ADAMTS13 activity in a subset of hospitalized patients. Presence of schistocytes/RBC fragment and elevated D-dimer on admission may warrant a work-up for ADAMTS13 activity and VWF antigen and activity levels. These findings indicate the need for future investigation to study the relationship between endothelial and coagulation activation and the efficacy of treatments aimed at prevention and/or amelioration of microangiopathy in COVID-19.
RESUMEN
Circadian rhythms align physiological functions with the light-dark cycle through oscillatory changes in the abundance of proteins in the clock transcriptional programme. Timely removal of these proteins by different proteolytic systems is essential to circadian strength and adaptability. Here we show a functional interplay between the circadian clock and chaperone-mediated autophagy (CMA), whereby CMA contributes to the rhythmic removal of clock machinery proteins (selective chronophagy) and to the circadian remodelling of a subset of the cellular proteome. Disruption of this autophagic pathway in vivo leads to temporal shifts and amplitude changes of the clock-dependent transcriptional waves and fragmented circadian patterns, resembling those in sleep disorders and ageing. Conversely, loss of the circadian clock abolishes the rhythmicity of CMA, leading to pronounced changes in the CMA-dependent cellular proteome. Disruption of this circadian clock/CMA axis may be responsible for both pathways malfunctioning in ageing and for the subsequently pronounced proteostasis defect.
Asunto(s)
Factores de Transcripción ARNTL/genética , Proteínas CLOCK/metabolismo , Autofagia Mediada por Chaperones/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Envejecimiento/fisiología , Animales , Lisosomas/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fotoperiodo , Proteoma/genética , Proteostasis/fisiología , Privación de Sueño/fisiopatología , Transcripción Genética/genéticaRESUMEN
Convalescent plasma with severe acute respiratory disease coronavirus 2 (SARS-CoV-2) antibodies (CCP) may hold promise as a treatment for coronavirus disease 2019 (COVID-19). We compared the mortality and clinical outcome of patients with COVID-19 who received 200 mL of CCP with a spike protein IgG titer ≥ 1:2430 (median 1:47,385) within 72 hours of admission with propensity score-matched controls cared for at a medical center in the Bronx, between April 13 and May 4, 2020. Matching criteria for controls were age, sex, body mass index, race, ethnicity, comorbidities, week of admission, oxygen requirement, D-dimer, lymphocyte counts, corticosteroid use, and anticoagulation use. There was no difference in mortality or oxygenation between CCP recipients and controls at day 28. When stratified by age, compared with matched controls, CCP recipients less than 65 years had 4-fold lower risk of mortality and 4-fold lower risk of deterioration in oxygenation or mortality at day 28. For CCP recipients, pretransfusion spike protein IgG, IgM, and IgA titers were associated with mortality at day 28 in univariate analyses. No adverse effects of CCP were observed. Our results suggest CCP may be beneficial for hospitalized patients less than 65 years, but data from controlled trials are needed to validate this finding and establish the effect of aging on CCP efficacy.
Asunto(s)
Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , COVID-19/terapia , SARS-CoV-2/inmunología , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/mortalidad , COVID-19/virología , Femenino , Mortalidad Hospitalaria , Humanos , Inmunización Pasiva/métodos , Masculino , Persona de Mediana Edad , Ciudad de Nueva York/epidemiología , Puntaje de Propensión , Estudios Retrospectivos , Glicoproteína de la Espiga del Coronavirus/inmunología , Resultado del Tratamiento , Sueroterapia para COVID-19RESUMEN
The causes of coagulopathy associated with COVID-19 disease are poorly understood. We aimed to investigate the relationship between markers of endothelial activation, intravascular hemolysis, coagulation, and organ damage in COVID-19 patients and study their association with disease severity and mortality. We conducted a retrospective study of 181 hospitalized COVID-19 patients randomly selected with equal distribution of survivors and non-survivors. Patients who died had significantly lower ADAMTS13 activity, significantly higher LDH, schistocytes and von Willebrand Factor levels compared to patients discharged alive. Only 30% of patients with an initial ADAMTS13 activity <43% survived vs. 60% with ADAMTS13 ≥43% who survived. In conclusion, COVID-19 may manifest as a TMA-like illness in a subset of hospitalized patients. Presence of schistocytes on admission may warrant a work-up for TMA. These findings indicate the need for future investigation to study the relationship between endothelial and coagulation activation and the efficacy of TMA treatments in COVID-19.
RESUMEN
Convalescent plasma with severe acute respiratory disease coronavirus 2 (SARS-CoV-2) antibodies (CCP) may hold promise as treatment for Coronavirus Disease 2019 (COVID-19). We compared the mortality and clinical outcome of patients with COVID-19 who received 200mL of CCP with a Spike protein IgG titer ≥1:2,430 (median 1:47,385) within 72 hours of admission to propensity score-matched controls cared for at a medical center in the Bronx, between April 13 to May 4, 2020. Matching criteria for controls were age, sex, body mass index, race, ethnicity, comorbidities, week of admission, oxygen requirement, D-dimer, lymphocyte counts, corticosteroids, and anticoagulation use. There was no difference in mortality or oxygenation between CCP recipients and controls at day 28. When stratified by age, compared to matched controls, CCP recipients <65 years had 4-fold lower mortality and 4-fold lower deterioration in oxygenation or mortality at day 28. For CCP recipients, pre-transfusion Spike protein IgG, IgM and IgA titers were associated with mortality at day 28 in univariate analyses. No adverse effects of CCP were observed. Our results suggest CCP may be beneficial for hospitalized patients <65 years, but data from controlled trials is needed to validate this finding and establish the effect of ageing on CCP efficacy.