Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768254

RESUMEN

The COVID-19 pandemic has required extensive research on the new coronavirus SARS-CoV-2 and the creation of new highly effective vaccines. The presence of T-cells in the body that respond to virus antigens suggests adequate antiviral immunity. We investigated T-cell immunity in individuals who recovered from mild and moderate COVID-19 and in individuals vaccinated with the Gam-COVID-Vac combined vector vaccine. The ELISPOT method was used to determine the number of T-cells responding with IFN-γ synthesis to stimulation by peptides containing epitopes of the S-protein or N-, M-, ORF3, and ORF7 proteins, using peripheral blood mononuclear cells (PBMCs). At the same time, the multiplex method was used to determine the accumulation of IFN-γ and other cytokines in the culture medium. According to the data obtained, the proportion of positive conclusions about the T-cell immune response to SARS-CoV-2 antigens in control, recovered, and vaccinated individuals was 12%, 70%, and 52%, respectively. At the same time, more than half of the vaccinated individuals with a T-cell response were sensitized to the antigens of N-, M-, ORF3, and ORF7 proteins not produced by Gam-COVID-Vac, indicating a high likelihood of asymptomatic SARS-CoV-2 infection. Increased IFN-γ release by single sensitized T-cells in response to specific stimulation in recovered and vaccinated individuals did not result in the accumulation of this and other cytokines in the culture medium. These findings suggest a balance between cytokine production and utilization by immunocompetent cells as a prerequisite for providing a controlled cytokine signal and avoiding a "cytokine storm".


Asunto(s)
COVID-19 , Vacunas , Humanos , Vacunas Combinadas , COVID-19/prevención & control , Leucocitos Mononucleares , Pandemias , SARS-CoV-2 , Linfocitos T , Citocinas , Medios de Cultivo , Anticuerpos Antivirales , Vacunación
2.
Adv Pharm Bull ; 11(3): 458-468, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34513620

RESUMEN

Purpose: Reducing the undesirable systemic effect of photodynamic therapy (PDT) can be achieved by incorporating a photosensitizer in microparticles (MPs). This study is devoted to the preparation of biocompatible biodegradable MPs with the inclusion of the natural photosensitizer Radachlorin (RС) and an assessment of the possibility of their use for PDT. Methods: RC-containing MPs (RС MPs) with poly(lactic-co-glycolic acid) copolymer (PLGA) matrix were prepared by a double emulsion solvent evaporation methods. The size and morphology of RC MPs were surveyed using scanning electron microscopy, confocal laser scanning microscopy, and dynamic light scattering. The content of RC, its release from RC MPs, and singlet oxygen generation were evaluated by the optical spectroscopy. Cellular uptake and cytotoxic photodynamic effect of RC MPs were investigated with in vitro assays. Results: The average diameter of the prepared RC MPs was about 2-3 µm. The RC MPs prepared by the water/oil/oil method had a significantly higher inclusion of RC (1.74 µg/mg) then RC MPs prepared by the water/oil/water method (0.089 µg/mg). Exposure of the prepared RC MPs to PDT light radiation was accompanied by the singlet oxygen generation and a cytotoxic effect for tumor cells. The release of the RC from the RC MPs was prolonged and lasted at least two weeks. Conclusion: PLGA RC MPs were found to cause a photoactivated cytotoxic effect for tumor cells and can be used for local application in PDT of tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA