Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mar Drugs ; 20(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35049882

RESUMEN

Animal venoms offer a valuable source of potent new drug leads, but their mechanisms of action are largely unknown. We therefore developed a novel network pharmacology approach based on multi-omics functional data integration to predict how stingray venom disrupts the physiological systems of target animals. We integrated 10 million transcripts from five stingray venom transcriptomes and 848,640 records from three high-content venom bioactivity datasets into a large functional data network. The network featured 216 signaling pathways, 29 of which were shared and targeted by 70 transcripts and 70 bioactivity hits. The network revealed clusters for single envenomation outcomes, such as pain, cardiotoxicity and hemorrhage. We carried out a detailed analysis of the pain cluster representing a primary envenomation symptom, revealing bibrotoxin and cholecystotoxin-like transcripts encoding pain-inducing candidate proteins in stingray venom. The cluster also suggested that such pain-inducing toxins primarily activate the inositol-3-phosphate receptor cascade, inducing intracellular calcium release. We also found strong evidence for synergistic activity among these candidates, with nerve growth factors cooperating with the most abundant translationally-controlled tumor proteins to activate pain signaling pathways. Our network pharmacology approach, here applied to stingray venom, can be used as a template for drug discovery in neglected venomous species.


Asunto(s)
Venenos de los Peces/farmacología , Rajidae , Animales , Organismos Acuáticos , Venenos de los Peces/química , Farmacología en Red
2.
FASEB J ; 32(3): 1296-1314, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29101221

RESUMEN

During differentiation and development, cell fate and identity are established by waves of genetic reprogramming. Although the mechanisms are largely unknown, during these events, dynamic chromatin reorganization is likely to ensure that multiple genes involved in the same cellular functions are coregulated, depending on the nuclear environment. In this study, using high-content screening of embryonic fibroblasts from a ß-actin knockout (KO) mouse, we found major chromatin rearrangements and changes in histone modifications, such as methylated histone (H)3-lysine-(K)9. Genome-wide H3K9 trimethylation-(Me)3 landscape changes correlate with gene up- and down-regulation in ß-actin KO cells. Mechanistically, we found loss of chromatin association by the Brahma-related gene ( Brg)/Brahma-associated factor (BAF) chromatin remodeling complex subunit Brg1 in the absence of ß-actin. This actin-dependent chromatin reorganization was concomitant with the up-regulation of sets of genes involved in angiogenesis, cytoskeletal organization, and myofibroblast features in ß-actin KO cells. Some of these genes and phenotypes were gained in a ß-actin dose-dependent manner. Moreover, reintroducing a nuclear localization signal-containing ß-actin in the knockout cells affected nuclear features and gene expression. Our results suggest that, by affecting the genome-wide organization of heterochromatin through the chromatin-binding activity of the BAF complex, ß-actin plays an essential role in the determination of gene expression programs and cellular identity.-Xie, X., Almuzzaini, B., Drou, N., Kremb, S., Yousif, A., Östlund Farrants, A.-K., Gunsalus, K., Percipalle, P. ß-Actin-dependent global chromatin organization and gene expression programs control cellular identity.


Asunto(s)
Actinas/fisiología , Reprogramación Celular/genética , Ensamble y Desensamble de Cromatina/genética , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Animales , Diferenciación Celular , Embrión de Mamíferos/citología , Fibroblastos/citología , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Ratones Noqueados
3.
Molecules ; 23(6)2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29912151

RESUMEN

Viruses are underrepresented as targets in pharmacological screening efforts, given the difficulties of devising suitable cell-based and biochemical assays. In this study we found that a pre-fractionated organic extract of the Red Sea sponge Amphimedon chloros was able to inhibit the West Nile Virus NS3 protease (WNV NS3). Using liquid chromatography⁻mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy, the identity of the bioactive compound was determined as a 3-alkylpyridinium with m/z = 190.16. Diffusion Ordered Spectroscopy (DOSY) NMR and NMR relaxation rate analysis suggest that the bioactive compound forms oligomers of up to 35 kDa. We observed that at 9.4 µg/mL there was up to 40⁻70% inhibitory activity on WNV NS3 protease in orthogonal biochemical assays for solid phase extracts (SPE) of A. chloros. However, the LC-MS purified fragment was effective at inhibiting the protease up to 95% at an approximate amount of 2 µg/mL with negligible cytotoxicity to HeLa cells based on a High-Content Screening (HCS) cytological profiling strategy. To date, 3-alkylpyridinium type natural products have not been reported to show antiviral activity since the first characterization of halitoxin, or 3-alkylpyridinium, in 1978. This study provides the first account of a 3-alkylpyridinium complex that exhibits a proposed antiviral activity by inhibiting the NS3 protease. We suggest that the here-described compound can be further modified to increase its stability and tested in a cell-based assay to explore its full potential as a potential novel antiviral capable of inhibiting WNV replication.


Asunto(s)
Antivirales/aislamiento & purificación , Poríferos/química , Inhibidores de Proteasas/aislamiento & purificación , Compuestos de Piridinio/aislamiento & purificación , Proteínas no Estructurales Virales/antagonistas & inhibidores , Virus del Nilo Occidental/enzimología , Animales , Antivirales/química , Antivirales/farmacología , Cromatografía de Gases y Espectrometría de Masas , Células HeLa , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Compuestos de Piridinio/química , Compuestos de Piridinio/farmacología , Relación Estructura-Actividad , Virus del Nilo Occidental/efectos de los fármacos
4.
Mar Drugs ; 15(3)2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28335513

RESUMEN

Marine algae represent an important source of novel natural products. While their bioactive potential has been studied to some extent, limited information is available on marine algae from the Red Sea. This study aimed at the broad discovery of new bioactivities from a collection of twelve macroalgal species from the Central Red Sea. We used imaging-based High-Content Screening (HCS) with a diverse spectrum of cellular markers for detailed cytological profiling of fractionated algal extracts. The cytological profiles for 3 out of 60 algal fractions clustered closely to reference inhibitors and showed strong inhibitory activities on the HIV-1 reverse transcriptase in a single-enzyme biochemical assay, validating the suggested biological target. Subsequent chemical profiling of the active fractions of two brown algal species by ultra-high resolution mass spectrometry (FT-ICR-MS) revealed possible candidate molecules. A database query of these molecules led us to groups of compounds with structural similarities, which are suggested to be responsible for the observed activity. Our work demonstrates the versatility and power of cytological profiling for the bioprospecting of unknown biological resources and highlights Red Sea algae as a source of bioactives that may serve as a starting point for further studies.


Asunto(s)
Productos Biológicos/química , Algas Marinas/química , Productos Biológicos/farmacología , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Océano Índico , Espectrometría de Masas/métodos , Arabia Saudita
5.
Mar Drugs ; 14(2)2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26861355

RESUMEN

The sponge Stylissa carteri is known to produce a number of secondary metabolites displaying anti-fouling, anti-inflammatory, and anti-cancer activity. However, the anti-viral potential of metabolites produced by S. carteri has not been extensively explored. In this study, an S. carteri extract was HPLC fractionated and a cell based assay was used to evaluate the effects of HPLC fractions on parameters of Human Immunodeficiency Virus (HIV-1) infection and cell viability. Candidate HIV-1 inhibitory fractions were then analyzed for the presence of potential HIV-1 inhibitory compounds by mass spectrometry, leading to the identification of three previously characterized compounds, i.e., debromohymenialdisine (DBH), hymenialdisine (HD), and oroidin. Commercially available purified versions of these molecules were re-tested to assess their antiviral potential in greater detail. Specifically, DBH and HD exhibit a 30%-40% inhibition of HIV-1 at 3.1 µM and 13 µM, respectively; however, both exhibited cytotoxicity. Conversely, oroidin displayed a 50% inhibition of viral replication at 50 µM with no associated toxicity. Additional experimentation using a biochemical assay revealed that oroidin inhibited the activity of the HIV-1 Reverse Transcriptase up to 90% at 25 µM. Taken together, the chemical search space was narrowed and previously isolated compounds with an unexplored anti-viral potential were found. Our results support exploration of marine natural products for anti-viral drug discovery.


Asunto(s)
Alcaloides/farmacología , Fármacos Anti-VIH/farmacología , VIH-1/efectos de los fármacos , Poríferos/metabolismo , Alcaloides/aislamiento & purificación , Alcaloides/toxicidad , Animales , Fármacos Anti-VIH/aislamiento & purificación , Fármacos Anti-VIH/toxicidad , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión/métodos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Transcriptasa Inversa del VIH/efectos de los fármacos , Humanos , Espectrometría de Masas/métodos , Metabolismo Secundario , Replicación Viral/efectos de los fármacos
7.
Commun Biol ; 5(1): 1409, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550289

RESUMEN

High-content screening (HCS) uses microscopy images to generate phenotypic profiles of cell morphological data in high-dimensional feature space. While HCS provides detailed cytological information at single-cell resolution, these complex datasets are usually aggregated into summary statistics that do not leverage patterns of biological variability within cell populations. Here we present a broad-spectrum HCS analysis system that measures image-based cell features from 10 cellular compartments across multiple assay panels. We introduce quality control measures and statistical strategies to streamline and harmonize the data analysis workflow, including positional and plate effect detection, biological replicates analysis and feature reduction. We also demonstrate that the Wasserstein distance metric is superior over other measures to detect differences between cell feature distributions. With this workflow, we define per-dose phenotypic fingerprints for 65 mechanistically diverse compounds, provide phenotypic path visualizations for each compound and classify compounds into different activity groups.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Microscopía , Ensayos Analíticos de Alto Rendimiento/métodos , Control de Calidad , Flujo de Trabajo
8.
Antimicrob Agents Chemother ; 54(12): 5257-68, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20876377

RESUMEN

HIV replication assays are important tools for HIV drug discovery efforts. Here, we present a full HIV replication system (EASY-HIT) for the identification and analysis of HIV inhibitors. This technology is based on adherently growing HIV-susceptible cells, with a stable fluorescent reporter gene activated by HIV Tat and Rev. A fluorescence-based assay was designed that measures HIV infection by two parameters relating to the early and the late phases of HIV replication, respectively. Validation of the assay with a panel of nine reference inhibitors yielded effective inhibitory concentrations consistent with published data and allowed discrimination between inhibitors of early and late phases of HIV replication. Finer resolution of the effects of reference drugs on different steps of HIV replication was achieved in secondary time-of-addition assays. The EASY-HIT assay yielded high Z' scores (>0.9) and signal stabilities, confirming its robustness. Screening of the LOPAC(1280) library identified 10 compounds (0.8%), of which eight were known to inhibit HIV, validating the suitability of this assay for screening applications. Studies evaluating anti-HIV activities of natural products with the EASY-HIT technology led to the identification of three novel inhibitory compounds that apparently act at different steps of HIV-1 replication. Furthermore, we demonstrate successful evaluation of plant extracts for HIV-inhibitory activities, suggesting application of this technology for the surveillance of biological extracts with anti-HIV activities. We conclude that the EASY-HIT technology is a versatile tool for the discovery and characterization of HIV inhibitors.


Asunto(s)
Fármacos Anti-VIH/farmacología , Evaluación Preclínica de Medicamentos/métodos , Infecciones por VIH/virología , VIH/efectos de los fármacos , Pruebas de Sensibilidad Microbiana/métodos , Línea Celular , Citometría de Flujo , Infecciones por VIH/tratamiento farmacológico , Humanos , Microscopía Fluorescente , Reproducibilidad de los Resultados , Replicación Viral/efectos de los fármacos
9.
Nature ; 428(6978): 66-70, 2004 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-14999280

RESUMEN

Zooxanthellae, endosymbiotic algae of reef-building corals, substantially contribute to the high gross primary production of coral reefs, but corals exude up to half of the carbon assimilated by their zooxanthellae as mucus. Here we show that released coral mucus efficiently traps organic matter from the water column and rapidly carries energy and nutrients to the reef lagoon sediment, which acts as a biocatalytic mineralizing filter. In the Great Barrier Reef, the dominant genus of hard corals, Acropora, exudes up to 4.8 litres of mucus per square metre of reef area per day. Between 56% and 80% of this mucus dissolves in the reef water, which is filtered through the lagoon sands. Here, coral mucus is degraded at a turnover rate of at least 7% per hour. Detached undissolved mucus traps suspended particles, increasing its initial organic carbon and nitrogen content by three orders of magnitude within 2 h. Tidal currents concentrate these mucus aggregates into the lagoon, where they rapidly settle. Coral mucus provides light energy harvested by the zooxanthellae and trapped particles to the heterotrophic reef community, thereby establishing a recycling loop that supports benthic life, while reducing loss of energy and nutrients from the reef ecosystem.


Asunto(s)
Antozoos/fisiología , Carbono/metabolismo , Ecosistema , Envejecimiento/fisiología , Animales , Australia , Metabolismo Energético , Eucariontes/fisiología , Cadena Alimentaria , Geografía , Sedimentos Geológicos , Moco/metabolismo , Nitrógeno/metabolismo , Oxígeno/metabolismo , Fósforo/metabolismo , Dióxido de Silicio , Solubilidad , Simbiosis , Agua/química , Movimientos del Agua
10.
Sci Rep ; 10(1): 1319, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992728

RESUMEN

Natural products (NP) are a valuable drug resource. However, NP-inspired drug leads are declining, among other reasons due to high re-discovery rates. We developed a conceptual framework using the metabolic fingerprint of entire ecosystems (MeE) to facilitate the discovery of global bioactivity hotspots. We assessed the MeE of 305 sites of diverse aquatic ecosystems, worldwide. All samples were tested for antiviral effects against the human immunodeficiency virus (HIV), followed by a comprehensive screening for cell-modulatory activity by High-Content Screening (HCS). We discovered a very strong HIV-1 inhibition mainly in samples taken from fjords with a strong terrestrial input. Multivariate data integration demonstrated an association of a set of polyphenols with specific biological alterations (endoplasmic reticulum, lysosomes, and NFkB) caused by these samples. Moreover, we found strong HIV-1 inhibition in one unrelated oceanic sample closely matching to HIV-1-inhibitory drugs on a cytological and a chemical level. Taken together, we demonstrate that even without physical purification, a sophisticated strategy of differential filtering, correlation analysis, and multivariate statistics can be employed to guide chemical analysis, to improve de-replication, and to identify ecosystems with promising characteristics as sources for NP discovery.


Asunto(s)
Productos Biológicos , Evaluación Preclínica de Medicamentos , Ecosistema , Metabolómica , Antivirales/química , Antivirales/farmacología , Productos Biológicos/química , Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Química Analítica , Análisis por Conglomerados , Evaluación Preclínica de Medicamentos/métodos , Geografía , Ensayos Analíticos de Alto Rendimiento , Metabolómica/métodos
12.
Sci Rep ; 7: 44472, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28295057

RESUMEN

Natural products (NPs) are highly evolved molecules making them a valuable resource for new therapeutics. Here we demonstrate the usefulness of broad-spectrum phenotypic profiling of NP-induced perturbations on single cells with imaging-based High-Content Screening to inform on physiology, mechanisms-of-actions, and multi-level toxicity. Our technology platform aims at broad applicability using a comprehensive marker panel with standardized settings streamlined towards an easy implementation in laboratories dedicated to natural products research.


Asunto(s)
Productos Biológicos/efectos adversos , Ensayos Analíticos de Alto Rendimiento , Análisis de la Célula Individual , Productos Biológicos/química , Productos Biológicos/farmacología , Células HeLa/efectos de los fármacos , Humanos , Fenotipo
13.
Sci Rep ; 7: 44714, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28303925

RESUMEN

Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed 16 S rRNA gene sequencing to study bacterial communities of three deep-sea scleractinian corals from the Red Sea, Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. We found diverse, species-specific microbiomes, distinct from the surrounding seawater. Microbiomes were comprised of few abundant bacteria, which constituted the majority of sequences (up to 58% depending on the coral species). In addition, we found a high diversity of rare bacteria (taxa at <1% abundance comprised >90% of all bacteria). Interestingly, we identified anaerobic bacteria, potentially providing metabolic functions at low oxygen conditions, as well as bacteria harboring the potential to degrade crude oil components. Considering the presence of oil and gas fields in the Red Sea, these bacteria may unlock this carbon source for the coral host. In conclusion, the prevailing environmental conditions of the deep Red Sea (>20 °C, <2 mg oxygen L-1) may require distinct functional adaptations, and our data suggest that bacterial communities may contribute to coral functioning in this challenging environment.


Asunto(s)
Adaptación Fisiológica , Antozoos/microbiología , Ambiente , Microbiota , Animales , Bacterias/genética , Bacterias/metabolismo , Análisis por Conglomerados , Océano Índico , ARN Ribosómico 16S/genética , Agua de Mar/microbiología
14.
PLoS One ; 12(6): e0177316, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28609451

RESUMEN

Natural products have been used for medical applications since ancient times. Commonly, natural products are structurally complex chemical compounds that efficiently interact with their biological targets, making them useful drug candidates in cancer therapy. Here, we used cell-based phenotypic profiling and image-based high-content screening to study the mode of action and potential cellular targets of plants historically used in Saudi Arabia's traditional medicine. We compared the cytological profiles of fractions taken from Juniperus phoenicea (Arar), Anastatica hierochuntica (Kaff Maryam), and Citrullus colocynthis (Hanzal) with a set of reference compounds with established modes of action. Cluster analyses of the cytological profiles of the tested compounds suggested that these plants contain possible topoisomerase inhibitors that could be effective in cancer treatment. Using histone H2AX phosphorylation as a marker for DNA damage, we discovered that some of the compounds induced double-strand DNA breaks. Furthermore, chemical analysis of the active fraction isolated from Juniperus phoenicea revealed possible anti-cancer compounds. Our results demonstrate the usefulness of cell-based phenotypic screening of natural products to reveal their biological activities.


Asunto(s)
Antineoplásicos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Preparaciones de Plantas/farmacología , Inhibidores de Topoisomerasa/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Brassicaceae/química , Caspasa 9/metabolismo , Supervivencia Celular/efectos de los fármacos , Citrullus colocynthis/química , Roturas del ADN de Doble Cadena/efectos de los fármacos , Daño del ADN , Células HeLa , Histonas/metabolismo , Humanos , Juniperus/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas/métodos , Estructura Molecular , Fosforilación/efectos de los fármacos , Preparaciones de Plantas/química , Arabia Saudita , Inhibidores de Topoisomerasa/química , Proteína p53 Supresora de Tumor/metabolismo
15.
PLoS One ; 11(11): e0163939, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27828965

RESUMEN

Coral reefs in the central Red Sea are sparsely studied and in situ data on physico-chemical and key biotic variables that provide an important comparative baseline are missing. To address this gap, we simultaneously monitored three reefs along a cross-shelf gradient for an entire year over four seasons, collecting data on currents, temperature, salinity, dissolved oxygen (DO), chlorophyll-a, turbidity, inorganic nutrients, sedimentation, bacterial communities of reef water, and bacterial and algal composition of epilithic biofilms. Summer temperature (29-33°C) and salinity (39 PSU) exceeded average global maxima for coral reefs, whereas DO concentration was low (2-4 mg L-1). While temperature and salinity differences were most pronounced between seasons, DO, chlorophyll-a, turbidity, and sedimentation varied most between reefs. Similarly, biotic communities were highly dynamic between reefs and seasons. Differences in bacterial biofilms were driven by four abundant families: Rhodobacteraceae, Flavobacteriaceae, Flammeovirgaceae, and Pseudanabaenaceae. In algal biofilms, green crusts, brown crusts, and crustose coralline algae were most abundant and accounted for most of the variability of the communities. Higher bacterial diversity of biofilms coincided with increased algal cover during spring and summer. By employing multivariate matching, we identified temperature, salinity, DO, and chlorophyll-a as the main contributing physico-chemical drivers of biotic community structures. These parameters are forecast to change most with the progression of ocean warming and increased nutrient input, which suggests an effect on the recruitment of Red Sea benthic communities as a result of climate change and anthropogenic influence. In conclusion, our study provides insight into coral reef functioning in the Red Sea and a comparative baseline to support coral reef studies in the region.


Asunto(s)
Antozoos/fisiología , Arrecifes de Coral , Ecosistema , Estaciones del Año , Absorción Fisicoquímica , Animales , Bacterias/clasificación , Bacterias/genética , Clorofila/metabolismo , Clorofila A , Conservación de los Recursos Naturales/métodos , Geografía , Océano Índico , Microalgas/clasificación , Microalgas/crecimiento & desarrollo , Oxígeno/metabolismo , Salinidad , Agua de Mar/química , Agua de Mar/microbiología , Temperatura , Movimientos del Agua
16.
PeerJ ; 2: e571, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25276504

RESUMEN

Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12-70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26-29%) when compared to the other sites (4-19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs.

17.
PLoS One ; 9(8): e103895, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25144758

RESUMEN

In recent years, marine algae have emerged as a rich and promising source of molecules with potent activities against various human pathogens. The widely distributed brown alga Lobophora variegata that is often associated with tropical coral reefs exerts strong antibacterial and antiprotozoal effects, but so far has not been associated with specific anti-viral activities. This study investigated potential HIV-1 inhibitory activity of L. variegata collected from different geographical regions, using a cell-based full replication HIV-1 reporter assay. Aqueous L. variegata extracts showed strong inhibitory effects on several HIV-1 strains, including drug-resistant and primary HIV-1 isolates, and protected even primary cells (PBMC) from HIV-1-infection. Anti-viral potency was related to ecological factors and showed clear differences depending on light exposition or epiphyte growth. Assays addressing early events of the HIV-1 replication cycle indicated that L. variegata extracts inhibited entry of HIV-1 into cells at a pre-fusion step possibly by impeding mobility of virus particles. Further characterization of the aqueous extract demonstrated that even high doses had only moderate effects on viability of cultured and primary cells (PBMCs). Imaging-based techniques revealed extract effects on the plasma membrane and actin filaments as well as induction of apoptosis at concentrations exceeding EC50 of anti-HIV-1 activity by more than 400 fold. In summary, we show for the first time that L. variegata extracts inhibit HIV-1 entry, thereby suggesting this alga as promising source for the development of novel HIV-1 inhibitors.


Asunto(s)
VIH-1/efectos de los fármacos , Phaeophyceae/química , Extractos Vegetales/farmacología , Internalización del Virus/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Leucocitos Mononucleares/virología , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA