Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Phys Chem Chem Phys ; 24(11): 6890-6904, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35253024

RESUMEN

Recently, the low-temperature phase of water molecules confined within nanocages formed by the crystalline lattice of water-containing cordierite crystals has been reported to comprise domains with ferroelectrically ordered dipoles within the a, b-planes which are antiferroelectrically alternating along the c-axis. In the present work, comprehensive broad-band dielectric spectroscopy is combined with specific heat studies and molecular dynamics and Monte Carlo simulations in order to investigate in more detail the collective modes and single-particle excitations of nanoconfined water molecules. From DFT-MD simulations we reconstruct the potential-energy landscape experienced by the H2O molecules. A rich set of anisotropic temperature-dependent excitations is observed in the terahertz frequency range. Their origin is associated with the complex rotational/translational vibrations of confined H2O molecules. A strongly temperature dependent relaxational excitation, observed at radio-microwave frequencies for the electric field parallel to the crystallographic a-axis, E||a is analyzed in detail. The temperature dependences of loss-peak frequency and dielectric strength of the excitation together with specific heat data confirm a ferroelectric order-disorder phase transition at T0 ≈ 3 K in the network of H2O dipoles. Additional dielectric data are also provided for polarization E||b, too. Overall, these combined experimental investigations enable detailed conclusions concerning the dynamics of the confined water molecules that develop within their microscopic energy landscapes.

2.
Phys Chem Chem Phys ; 22(7): 3914-3920, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32016248

RESUMEN

First principles Density Functional Theory (DFT) hybrid functional PBESOL0 calculations of the atomic and electronic structure of perfect CsPbI3, CsPbBr3 and CsPbCl3 crystals, as well as defective CsPbI3 and CsPbBr3 crystals are performed and discussed. For the perfect structure, decomposition energy into binary compounds (CsX and PbX2) is calculated, and a stability trend of the form CsPbBr3 > CsPbI3 > CsPbCl3 is found. In addition, calculations of the temperature-dependent heat capacity are performed and shown to be in good agreement with experimental data. As far as the defect structure is considered, it is shown that interstitial halide atoms in CsPbBr3 do not tend to form di-halide dumbbells Br2- while such dimers are energetically favoured in CsPbI3, analogous to the well-known H-centers in alkali halides. In the case of CsPbBr3, a loose trimer configuration (Br32-) seems to be energetically preferred. The effects of crystalline symmetry and covalency are discussed, alongside the role of defects in recombination processes.

3.
Phys Rev Lett ; 118(24): 247201, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28665634

RESUMEN

We report a ^{51}V nuclear magnetic resonance investigation of the frustrated spin-1/2 chain compound LiCuVO_{4}, performed in pulsed magnetic fields and focused on high-field phases up to 56 T. For the crystal orientations H∥c and H∥b, we find a narrow field region just below the magnetic saturation where the local magnetization remains uniform and homogeneous, while its value is field dependent. This behavior is the first microscopic signature of the spin-nematic state, breaking spin-rotation symmetry without generating any transverse dipolar order, and is consistent with theoretical predictions for the LiCuVO_{4} compound.

4.
Phys Rev Lett ; 110(23): 237002, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25167524

RESUMEN

By systematic investigations of the magnetic, transport, and thermodynamic properties of single crystals of EuFe(2)(As(1-x)P(x))(2) (0≤x≤1), we explore the complex interplay of superconductivity and Eu(2+) magnetism. Below 30 K, two magnetic transitions are observed for all P substituted crystals, suggesting a revision of the phase diagram. In addition to the canted A-type antiferromagnetic order of Eu(2+) at ∼20 K, a spin glass transition is discovered at lower temperatures. Most remarkably, the reentrant spin glass state of EuFe(2)(As(1-x)P(x))(2) coexists with superconductivity around x≈0.2.

5.
Appl Magn Reson ; 44(1-2): 143-151, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23349566

RESUMEN

We have studied the magnetic cluster compound Nb(6)F(15) which has an odd number of 15 valence electrons per (Nb(6)F(12))(3+) cluster core, as a function of temperature using nuclear magnetic resonance, magnetic susceptibility, electron magnetic resonance and neutron powder diffraction. Nuclear magnetic resonance of the (19)F nuclei shows two lines corresponding to the apical F(a-a) nucleus, and to the inner F(i) nuclei. The temperature dependence of the signal from the F(i) nuclei reveals an antiferromagnetic ordering at T < 5 K, with a hyperfine field of ~2 mT. Magnetic susceptibility exhibits a Curie-Weiss behavior with T(N) ~5 K, and µ(eff) ~1.57 µ(B) close to the expected theoretical value for one unpaired electron (1.73 µ(B)). Electron magnetic resonance linewidth shows a transition at 5 K. Upon cooling from 10 to 1.4 K, the neutron diffraction shows a decrease in the intensity of the low-angle diffuse scattering below Q ~0.27 Å(-1). This decrease is consistent with emergence of magnetic order of large magnetic objects (clusters). This study shows that Nb(6)F(15) is paramagnetic at RT and undergoes a transition to antiferromagnetic order at 5 K. This unique antiferromagnetic ordering results from the interaction between magnetic spins delocalized over each entire (Nb(6)F(12) (i))(3+) cluster core, rather than the common magnetic ordering.

6.
Phys Rev Lett ; 109(2): 027203, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-23030203

RESUMEN

Polarized and unpolarized neutron scattering experiments on the frustrated ferromagnetic spin-1/2 chain LiCuVO4 show that the phase transition at H(Q) of 8 T is driven by quadrupolar fluctuations and that dipolar correlations are short range with moments parallel to the applied magnetic field in the high-field phase. Heat-capacity measurements evidence a phase transition into this high-field phase, with an anomaly clearly different from that at low magnetic fields. Our experimental data are consistent with a picture where the ground state above H(Q) has a next-nearest neighbor bond-nematic order along the chains with a fluidlike coherence between weakly coupled chains.

7.
Phys Rev Lett ; 104(23): 237207, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20867269

RESUMEN

Inelastic neutron scattering measurements show the existence of a strong two-spinon continuum in the frustrated ferromagnetic spin-1/2 chain compound LiCuVO4. The dynamic magnetic susceptibility is well described by a mean-field model of two coupled interpenetrating antiferromagnetic Heisenberg chains. The extracted values of the exchange integrals are in good agreement with the static magnetic susceptibility data and an earlier spin-wave description of the bound state near the lower boundary of the two-spinon continuum. In addition, there is clear evidence for a four-spinon continuum at high energies.

8.
Phys Rev Lett ; 105(2): 027003, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20867730

RESUMEN

The specific heat of high-purity Ba(0.68)K(0.32)Fe2As2 single crystals with the highest reported superconducting Tc=38.5 K was studied. The electronic specific heat Cp below Tc shows two gap features, with Δ1≈11 meV and Δ2≈3.5 meV obtained from an α-model analysis. The reduced gap value, 2Δ(max)/kBTc≈6.6, the magnitude of the specific-heat jump, ΔCp(Tc)/Tc, and its slope below Tc exhibit a strong-coupling character. We also show that an Eliashberg model with two hole and two electron bands gives the correct values of Tc, the superconducting gaps, and the free-energy difference.

9.
Nat Commun ; 11(1): 3927, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764722

RESUMEN

Intermolecular hydrogen bonds impede long-range (anti-)ferroelectric order of water. We confine H2O molecules in nanosized cages formed by ions of a dielectric crystal. Arranging them in channels at a distance of ~5 Å with an interchannel separation of ~10 Å prevents the formation of hydrogen networks while electric dipole-dipole interactions remain effective. Here, we present measurements of the temperature-dependent dielectric permittivity, pyrocurrent, electric polarization and specific heat that indicate an order-disorder ferroelectric phase transition at T0 ≈ 3 K in the water dipolar lattice. Ab initio molecular dynamics and classical Monte Carlo simulations reveal that at low temperatures the water molecules form ferroelectric domains in the ab-plane that order antiferroelectrically along the channel direction. This way we achieve the long-standing goal of arranging water molecules in polar order. This is not only of high relevance in various natural systems but might open an avenue towards future applications in biocompatible nanoelectronics.

10.
Phys Rev Lett ; 103(18): 187401, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19905830

RESUMEN

Spectroscopic ellipsometry was used to study the dielectric function of LiCuVO4, a compound comprised of chains of edge-sharing CuO4 plaquettes, in the spectral range 0.75-6.5 eV at temperatures 7-300 K. For photon polarization along the chains, the data reveal a weak but well-resolved two-peak structure centered at 2.15 and 2.95 eV whose spectral weight is strongly enhanced upon cooling near the magnetic ordering temperature. We identify these features as an exciton doublet in the Mott-Hubbard gap that emerges as a consequence of the Coulomb interaction between electrons on nearest and next-nearest-neighbor sites along the chains. Our results and methodology can be used to address the role of the long-range Coulomb repulsion for compounds with doped copper-oxide chains and planes.

11.
Nat Commun ; 8(1): 2167, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29255140

RESUMEN

A subtle balance between competing interactions in iron-based superconductors (FeSCs) can be tipped by additional interfacial interactions in a heterostructure, often inducing exotic phases with unprecedented properties. Particularly when the proximity-coupled layer is magnetically active, rich phase diagrams are expected in FeSCs, but this has not been explored yet. Here, using high-accuracy 75As and 51V nuclear magnetic resonance measurements, we investigate an electronic phase that emerges in the FeAs layer below T 0 ~ 155 K of Sr2VO3FeAs, a naturally assembled heterostructure of an FeSC and a Mott-insulating vanadium oxide. We find that frustration of the otherwise dominant Fe stripe and V Neel fluctuations via interfacial coupling induces a charge/orbital order in the FeAs layers, without either static magnetism or broken C 4 symmetry, while suppressing the Neel antiferromagnetism in the SrVO3 layers. These findings demonstrate that the magnetic proximity coupling stabilizes a hidden order in FeSCs, which may also apply to other strongly correlated heterostructures.

12.
Sci Rep ; 6: 26394, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27216477

RESUMEN

Iron-based compounds (IBS) display a surprising variety of superconducting properties that seems to arise from the strong sensitivity of these systems to tiny details of the lattice structure. In this respect, systems that become superconducting under pressure, like CaFe2As2, are of particular interest. Here we report on the first directional point-contact Andreev-reflection spectroscopy (PCARS) measurements on CaFe2As2 crystals under quasi-hydrostatic pressure, and on the interpretation of the results using a 3D model for Andreev reflection combined with ab-initio calculations of the Fermi surface (within the density functional theory) and of the order parameter symmetry (within a random-phase-approximation approach in a ten-orbital model). The almost perfect agreement between PCARS results at different pressures and theoretical predictions highlights the intimate connection between the changes in the lattice structure, a topological transition in the holelike Fermi surface sheet, and the emergence on the same sheet of an order parameter with a horizontal node line.

13.
Nat Commun ; 7: 12842, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27687693

RESUMEN

Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole-dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole-dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie-Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices.

14.
J Phys Condens Matter ; 26(2): 022202, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24275498

RESUMEN

EuTiO3 is shown to exhibit novel strong spin-charge-lattice coupling deep in the paramagnetic phase. Its existence is evidenced by an, until now, unknown response of the paramagnetic susceptibility at temperatures exceeding the structural phase transition temperature T(S) = 282 K. The 'extra' features in the susceptibility follow the rotational soft zone boundary mode temperature dependence above and below TS. The theoretical modeling consistently reproduces this behavior and provides reasoning for the stabilization of the soft optic mode other than quantum fluctuations.

15.
J Phys Condens Matter ; 26(2): 025701, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24304506

RESUMEN

We have synthesized polycrystalline samples of superconducting LaC2 and investigated them by x-ray and neutron powder diffraction, magnetic susceptibility and heat capacity measurements. Depending on the preparation conditions we find superconductivity below ~1.8 K. A comparison of the superconducting anomaly in the heat capacity with theoretical predictions indicates LaC2 to be a weak-coupling BCS-type superconductor. Evidence for a structural phase transition has not been found from the neutron powder diffraction experiments carried out down to 4 K. A negative thermal expansion of the c lattice parameter was observed below ~50 K. The electronic structure of LaC2 has been calculated ab initio and it is compared with that of YC2. The carbon-carbon distance of LaC2 has been determined from the neutron powder diffraction experiments and it is compared and discussed with respect to those observed in other superconducting binary and ternary La and Y carbides and carbide halides.

16.
J Phys Condens Matter ; 25(6): 065601, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23315241

RESUMEN

The temperature dependence of the spin susceptibilities of S = 1, 3/2, 2, 5/2 and 7/2 Heisenberg antiferromagnetic 1D spins chains with nearest-neighbor coupling was simulated via quantum Monte Carlo calculations, within the reduced temperature range of 0.005 ≤ T* ≤ 100, and fitted to a Padé approximation with deviations between the simulated and fitted data of the same order of magnitude as or smaller than the quantum Monte Carlo simulation error. To demonstrate the practicality of our theoretical findings, we compare these results with the susceptibility of the well known 1D chain compound TMMC ([(CH(3))(4)N[MnCl(3)]], d(5), S = 5/2) and find that different intra-chain spin-exchange parameters result if we consider the data above and below the structural phase transition reported for TMMC at ~126 K. The structural phase transition, which gives rise to an anomaly in the magnetic susceptibility, is independent of the magnetic field up to magnetic fields of 7 T. Additionally, we show that the S = 1 system NiTa(2)O(6) with tri-rutile crystal structure can be very well described as a Heisenberg S = 1 spin chain.


Asunto(s)
Chalconas/química , Espectroscopía de Resonancia por Spin del Electrón , Compuestos Ferrosos/química , Magnetismo , Modelos Teóricos , Teoría Cuántica , Simulación por Computador , Método de Montecarlo , Espectrofotometría Atómica
17.
J Phys Condens Matter ; 25(37): 376002, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-23963024

RESUMEN

The antiferromagnetic (AFM) phase transition temperature TN of EuTiO3 has been studied as a function of pressure p. The data reveal a nonlinear dependence of TN on p with TN increasing with increasing pressure. The exchange interactions exhibit an analogous dependence on p as TN (if the absolute value of the nearest neighbor interaction is considered) and there is evidence that the AFM transition is robust with increasing pressure. The corresponding Weiss temperature ΘW remains anomalous since it always exhibits positive values. The data are analyzed within the Bloch power law model and provide excellent agreement with experiment.


Asunto(s)
Europio/química , Compuestos Ferrosos/química , Magnetismo , Óxidos/química , Titanio/química , Transición de Fase , Presión , Temperatura de Transición
18.
J Phys Condens Matter ; 24(50): 505701, 2012 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-23165202

RESUMEN

Cd(2)Re(2)O(7) is a pyrochlore superconductor with a transition temperature T(c) near 1 K. We report on the far-infrared optical properties of Cd(2)Re(2)O(7) at temperatures above and below T(c) with a particular emphasis on changes in the spectrum below T(c). Seventeen phonon modes are observed in the normal state optical conductivity spectrum of Cd(2)Re(2)O(7) at low temperatures in good agreement with a factor group analysis. In the superconducting state, a softening (~1 cm(-1)) of the phonon modes at 35 and 61 cm(-1) occurs and thermal reflectance spectra show the development of two additional strong absorption features, near 9.6 and 19.3 cm(-1). The dominant presence of lattice vibrational modes in the optical spectrum suggests that electron-phonon interaction plays an important role in the normal and superconducting state properties of Cd(2)Re(2)O(7).

19.
J Phys Condens Matter ; 21(39): 392201, 2009 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21832383

RESUMEN

The spin lattice appropriate for azurite Cu(3)(CO(3))(2)(OH)(2) was determined by evaluating its spin exchange interactions on the basis of first principles density functional calculations. It is found that azurite is not well described as an isolated diamond chain with no spin frustration, but is better modeled as a two-dimensional spin lattice in which diamond chains with spin frustration interact through the interchain spin exchange in the ab-plane. Our analysis indicates that the magnetic properties of azurite at low temperatures can be approximated on the basis of two independent contributions, i.e., isolated dimer and effective uniform chain contributions. This prediction was verified by analyzing the magnetic susceptibility and specific heat data for azurite.

20.
Phys Rev Lett ; 102(2): 027001, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19257309

RESUMEN

Spectroscopic ellipsometry is used to determine the dielectric function of superconducting LaFeAsO0.9F0.1 (T_{c}=27 K) and undoped LaFeAsO polycrystalline samples in the wide range 0.01-6.5 eV at temperatures 10< or =T< or =350 K. The charge carrier response in both samples is heavily damped. The spectral weight transfer in LaFeAsO associated with an opening of the pseudogap at about 0.65 eV is restricted to energies below 2 eV. The spectra of superconducting LaFeAsO0.9F0.1 reveal a significant transfer of spectral weight to a broad optical band above 4 eV with increasing temperature. Our data may imply that the electronic states near the Fermi surface are strongly renormalized due to electron-phonon and/or electron-electron interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA