Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2203, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459278

RESUMEN

The ability of Mycobacterium tuberculosis (Mtb) to resist and tolerate antibiotics complicates the development of improved tuberculosis (TB) chemotherapies. Here we define the Mtb protein CinA as a major determinant of drug tolerance and as a potential target to shorten TB chemotherapy. By reducing the fraction of drug-tolerant persisters, genetic inactivation of cinA accelerated killing of Mtb by four antibiotics in clinical use: isoniazid, ethionamide, delamanid and pretomanid. Mtb ΔcinA was killed rapidly in conditions known to impede the efficacy of isoniazid, such as during nutrient starvation, during persistence in a caseum mimetic, in activated macrophages and during chronic mouse infection. Deletion of CinA also increased in vivo killing of Mtb by BPaL, a combination of pretomanid, bedaquiline and linezolid that is used to treat highly drug-resistant TB. Genetic and drug metabolism studies suggest that CinA mediates drug tolerance via cleavage of NAD-drug adducts.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Animales , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tolerancia a Medicamentos , Isoniazida/farmacología , Ratones , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
2.
PLoS One ; 8(5): e63237, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23696800

RESUMEN

The Mycobacterium abscessus complex is an emerging cause of chronic pulmonary infection in patients with underlying lung disease. The M. abscessus complex is regarded as an environmental pathogen but its molecular adaptation to the human lung during long-term infection is poorly understood. Here we carried out a longitudinal molecular epidemiological analysis of 178 M. abscessus spp. isolates obtained from 10 cystic fibrosis (CF) and 2 non CF patients over a 13 year period. Multi-locus sequence and molecular typing analysis revealed that 11 of 12 patients were persistently colonized with the same genotype during the course of the infection while replacement of a M. abscessus sensu stricto strain with a Mycobacterium massiliense strain was observed for a single patient. Of note, several patients including a pair of siblings were colonized with closely-related strains consistent with intra-familial transmission or a common infection reservoir. In general, a switch from smooth to rough colony morphology was observed during the course of long-term infection, which in some cases correlated with an increasing severity of clinical symptoms. To examine evolution during long-term infection of the CF lung we compared the genome sequences of 6 sequential isolates of Mycobacterium bolletii obtained from a single patient over an 11 year period, revealing a heterogeneous clonal infecting population with mutations in regulators controlling the expression of virulence factors and complex lipids. Taken together, these data provide new insights into the epidemiology of M. abscessus spp. during long-term infection of the CF lung, and the molecular transition from saprophytic organism to human pathogen.


Asunto(s)
Pulmón/microbiología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium/genética , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Humanos , Mycobacterium/clasificación , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA