Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 14(5): 1978-1989, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35060988

RESUMEN

Molecular magnetism and specifically magnetic molecules have recently gained plenty of attention as key elements for quantum technologies, information processing, and spintronics. Transition to the nanoscale and implementation of ordered structures with defined parameters is crucial for advanced applications. Single-walled carbon nanotubes (SWCNTs) provide natural one-dimensional confinement that can be implemented for encapsulation, nanosynthesis, and polymerization of molecules into nanoribbons. Recently, the formation of atomically precise graphene nanoribbons inside SWCNTs has been reported. However, there have been only a limited amount of approaches to form ordered magnetic structures inside the nanotube channels and the creation of magnetic nanoribbons is still lacking. In this work we synthesize and reveal the properties of cobalt-phthalocyanine based nanoribbons (CoPcNRs) encapsulated in SWCNTs. Raman spectroscopy, transmission electron microscopy, absorption spectroscopy, and density functional theory calculations allowed us to confirm the encapsulation and to reveal the specific fingerprints of CoPcNRs. The magnetic properties were studied by transverse magnetooptical Kerr effect measurements, which indicated a strong difference in comparison with the pristine unfilled SWCNTs due to the impact of Co incorporated atoms. We anticipate that this approach of polymerization of encapsulated magnetic molecules inside SWCNTs will result in a diverse class of protected low-dimensional ordered magnetic materials for various applications.

2.
Nanomaterials (Basel) ; 11(11)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34835690

RESUMEN

All-dielectric nanostructures provide a unique low-loss platform for efficiently increasing light-matter interaction via excitation of the localized or propagating optical modes. Here, we report on the transverse magneto-optical Kerr effect enhancement in an all-dielectric metasurface based on a two-dimensional array of Si nanodisks on a cerium substituted dysprosium iron garnet thin film. We observed up to 15% light intensity modulation under TM modes excitation. The observed magneto-optical effect is nearly independent of the rotation of the light incidence plane with respect to the metasurface. Being compatible with conventional semiconductor technology, our structure holds promise for device applications, such as light modulators, magnetic and chemical sensors.

3.
Nat Commun ; 11(1): 5487, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33127921

RESUMEN

Nanostructured magnetic materials provide an efficient tool for light manipulation on sub-nanosecond and sub-micron scales, and allow for the observation of the novel effects which are fundamentally impossible in smooth films. For many cases of practical importance, it is vital to observe the magneto-optical intensity modulation in a dual-polarization regime. However, the nanostructures reported on up to date usually utilize a transverse Kerr effect and thus provide light modulation only for p-polarized light. We present a concept of a transparent magnetic metasurface to solve this problem, and demonstrate a novel mechanism for magneto-optical modulation. A 2D array of bismuth-substituted iron-garnet nanopillars on an ultrathin iron-garnet slab forms a metasurface supporting quasi-waveguide mode excitation. In contrast to plasmonic structures, the all-dielectric magnetic metasurface is shown to exhibit much higher transparency and superior quality-factor resonances, followed by a multifold increase in light intensity modulation. The existence of a wide variety of excited mode types allows for advanced light control: transmittance of both p- and s-polarized illumination becomes sensitive to the medium magnetization, something that is fundamentally impossible in smooth magnetic films. The proposed metasurface is very promising for sensing, magnetometry and light modulation applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA