Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 393, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446325

RESUMEN

Microvesicles (MVs) serve as biomarkers and transmitters for cell communication and also act as essential contributors to diseases. Platelets release microvesicles when activated voluntarily, making them a significant source. Platelet-derived microvesicles possess a range of characteristics similar to their parent cells and were shown to exert regulatory impacts on vascular and immunological cells. MVs can alter the activity of recipient cells by transferring their internal components. Furthermore, it has been identified that microvesicles derived from platelets possess the ability to exert immunomodulatory effects on different kinds of cells. Recent research has shown that microvesicles have a bidirectional influence of harming and preventing the receptor cells. Nevertheless, the specific characteristics of the active molecules responsible for this phenomenon are still unknown. The primary focus of this review was to explore the mechanism of vascular tissue regeneration and the specific molecules that play a role in mediating various biological effects throughout this process. These molecules exert their effects by influencing autophagy, apoptosis, and inflammatory pathways.


Asunto(s)
Apoptosis , Plaquetas , Autofagia , Comunicación Celular , Inmunomodulación
2.
Cell Biochem Funct ; 42(6): e4103, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39073207

RESUMEN

The cancer treatment landscape is significantly evolving, focusing on advanced radiation therapy methods to maximize effectiveness and minimize the adverse effects. Recognized as a pivotal component in cancer and disease treatment, radiation therapy (RT) has drawn attention in recent research that delves into its intricate interplay with inflammation and the immune response. This exploration unveils the underlying processes that significantly influence treatment outcomes. In this context, the potential advantages of combining bronchoscopy with RT across diverse clinical scenarios, alongside the targeted impact of brachytherapy, are explored. Concurrently, radiation treatments serve multifaceted roles such as DNA repair, cell elimination, and generating immune stress signaling molecules known as damage-associated molecular patterns, elucidating their effectiveness in treating various diseases. External beam RT introduces versatility by utilizing particles such as photons, electrons, protons, or carbon ions, each offering distinct advantages. Advanced RT techniques contribute to the evolving landscape, with emerging technologies like FLASH, spatially fractionated RT, and others poised to revolutionize the field. The comprehension of RT, striving for improved treatment outcomes, reduced side effects, and facilitating personalized and innovative treatments for cancer and noncancer patients. After navigating these advancements, the goal is fixed to usher in a new era in which RT is a cornerstone of precision and effectiveness in medical interventions. In summarizing the myriad findings, the review underscores the significance of understanding the differential impacts of radiation approaches on inflammation and immune modulation, offering valuable insights for developing innovative therapeutic interventions that harness the immune system in conjunction with RT.


Asunto(s)
Sistema Inmunológico , Neoplasias , Humanos , Neoplasias/radioterapia , Neoplasias/inmunología , Sistema Inmunológico/efectos de la radiación , Sistema Inmunológico/metabolismo , Radioterapia/efectos adversos , Radioterapia/métodos , Inflamación/radioterapia , Inflamación/inmunología , Reparación del ADN
3.
Artículo en Inglés | MEDLINE | ID: mdl-38963621

RESUMEN

Water plays a significant role in sustaining the lives of humans and other living organisms. Groundwater quality analysis has become inevitable, because of increased contamination of water resources and global warming. This study used machine learning (ML) models to predict the water quality index (WQI) and water quality classification (WQC). Forty groundwater samples were collected near the Ranipet industrial corridor, and the hydrogeochemistry and heavy metal contamination were analyzed. WQC prediction employed random forest (RF), gradient boosting (GB), decision tree (DT), and K-nearest neighbor (KNN) models, and WQI prediction used extreme gradient boosting (XGBoost), support vector regressor (SVR), RF, and multi-layer perceptron (MLP) models. The grid search method is used to evaluate the ML model by F1 score, accuracy, recall, precision, and Matthews correlation coefficient (MCC) for WQC and the coefficient of determination (R2), mean absolute error (MAE), mean square error (MSE), and median absolute percentage error (MAPE) for WQI. The WQI results indicate that the groundwater quality of the study area is very poor and unsuitable for drinking or irrigation purposes. The performance metrics of the RF model excelled in predicting both WQC (accuracy = 97%) and WQI (R2 = 91.0%), outperforming other models and emphasizing ML's superiority in groundwater quality assessment. The findings suggest that ML models perform well and yield better accuracy than conventional techniques used in groundwater quality assessment studies.

4.
Environ Sci Pollut Res Int ; 31(19): 28253-28278, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38532217

RESUMEN

Water plays an essential role in sustaining life on Earth as an indispensable natural resource. In recent decades, dependence on groundwater for domestic and industrial purposes has become inevitable. The Ranipet industrial environs (RIE) has many tanneries and chemical industries, which affects the groundwater quality. This study assessed groundwater quality and its suitability for domestic, agricultural, and human health risk assessments. 40 groundwater samples (28 open wells and 12 bore wells) were collected during pre-monsoon 2022 and analyzed by employing multivariate statistics, standard scatter plots, irrigation indices, and health risk assessment. The results of hydrogeochemical analysis and multivariate statistics affirmed that electrical conductivity (EC), total dissolved solids (TDS), calcium (Ca2+), and magnesium (Mg2+) have controlled the hydrochemistry of RIE. Cadmium (Cd) at 46% and chromium (Cr) at 33% have contaminated the groundwater in the study area, making it unsuitable for human consumption and irrigation. The agricultural indices analysis results show groundwater quality ranging from very poor to unsuitable making it unsuitable and also affects crop productivity. Hazard index (HI) results infer that Cr and Cd severely contaminated the RIE's groundwater, encompassing 14 villages, making the groundwater unfit for drinking, domestic use, and irrigation. Hazard quotient (HQ) and incremental lifetime cancer risk (ILCR) analysis revealed that 2 in 100 infants and 3 in 1000 people over the age of 63 are likely to develop cancer due to Cr and Cd in the REI. This is a need-of-the-hour problem, addressing this issue with preventive measures to ensure the protection of groundwater sources will lead to achieving the Sustainable Development Goal 6 (Clean Water and Sanitation).


Asunto(s)
Agricultura , Monitoreo del Ambiente , Agua Subterránea , Metales Pesados , Contaminantes Químicos del Agua , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Metales Pesados/análisis , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA