Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Opt Express ; 31(5): 7265-7276, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36859862

RESUMEN

Nonlinear interferometers with quantum correlated photons have been demonstrated to improve optical characterization and metrology. These interferometers can be used in gas spectroscopy, which is of particular interest for monitoring greenhouse gas emissions, breath analysis and industrial applications. Here, we show that gas spectroscopy can be further enhanced via the deployment of crystal superlattices. This is a cascaded arrangement of nonlinear crystals forming interferometers, allowing the sensitivity to scale with the number of nonlinear elements. In particular, the enhanced sensitivity is observed via the maximum intensity of interference fringes that scales with low concentration of infrared absorbers, while for high concentration the sensitivity is better in interferometric visibility measurements. Thus, a superlattice acts as a versatile gas sensor since it can operate by measuring different observables, which are relevant to practical applications. We believe that our approach offers a compelling path towards further enhancements for quantum metrology and imaging using nonlinear interferometers with correlated photons.

2.
Nano Lett ; 22(15): 6141-6148, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35867018

RESUMEN

Resonant metasurfaces provide a unique platform for enhancing multiwave nonlinear interactions. However, the difficulties over mode matching and material transparency place significant challenges in the enhancement of these multiwave processes. Here we demonstrate efficient nonlinear sum-frequency generation (SFG) in multiresonant GaP metasurfaces based on guided-wave bound-state in the continuum resonances. The excitation of the metasurface by two near-infrared input beams generates strong SFG in the visible spectrum with a conversion efficiency of 2.5 × 10-4 W-1, 2 orders of magnitude higher than the one reported in Mie-type resonant metasurfaces. In addition, we demonstrate the nontrivial polarization dependence on the SFG process. In contrast to harmonic generation, the SFG process is enhanced when using nonparallel polarized input-beams. Importantly, by varying the input pump beam polarization it is possible to direct the SFG emission to different diffraction orders, thereby opening up new opportunities for nonlinear light sources and infrared to visible light conversion.

3.
Opt Express ; 29(7): 10307-10320, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33820169

RESUMEN

We designed, fabricated and tested gallium phosphide (GaP) nano-waveguides for second harmonic generation (SHG). We demonstrate SHG in the visible range around 655 nm using modal phase matching. We observe phase matched SHG for different combinations of interacting modes by varying the widths of the waveguides and tuning the wavelength of the pump. We achieved a normalized internal SHG conversion efficiency of 0.4% W-1cm-2 for a continuous-wave pump at wavelength of 1283.5 nm, the highest reported in the literature for a GaP waveguide. We also demonstrated temperature tuning of the SHG wavelength with a slope of 0.17 nm/°C. The presented results contribute to the development of integrated photonic platforms with efficient nonlinear wave-mixing processes for classical and quantum applications.

4.
Opt Lett ; 46(2): 242-245, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33448997

RESUMEN

Optical frequency conversion in semiconductor nanophotonic devices usually imposes stringent requirements on fabrication accuracy and etch surface roughness. Here, we adopt the concept of bound-state-in-continuum (BIC) for waveguide frequency converter design, which obviates the limitations in nonlinear material nano-fabrication and requires to pattern only a low-refractive-index strip on the nonlinear slab. Taking gallium phosphide (GaP) as an example, we study second-harmonic generation using horizontally polarized pump light at 1.55 µm phase matching to vertically polarized BIC modes. A theoretical normalized frequency conversion efficiency of 1.1×104 % W -1 c m -2 is obtained using the fundamental BIC mode, which is comparable to that of conventional GaP waveguides.

5.
Opt Lett ; 46(3): 653-656, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33528432

RESUMEN

Miniaturized entangled photon sources, in particular based on subwavelength metasurfaces, are highly demanded for the development of integrated quantum photonics. Here, as a first step towards the development of quantum optical metasurfaces (QOMs), we demonstrate generation of entangled photons via spontaneous parametric down-conversion (SPDC) from subwavelength films. We achieve photon pair generation with a high coincidence-to-accidental ratio in lithium niobate and gallium phosphide nanofilms. By implementing the fiber spectroscopy of SPDC in nanofilms, we measure a spectrum with a bandwidth of 500 nm, limited only by the overall detection efficiency. The spectrum reveals vacuum field enhancement due to a Fabry-Perot resonance inside the nonlinear films. It also suggests a strategy for observing SPDC from QOM. Our experiments lay the groundwork for future development of flat SPDC sources, including QOM.

6.
Nano Lett ; 20(12): 8745-8751, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33206536

RESUMEN

Resonant metasurfaces are an attractive platform for enhancing the nonlinear optical processes, such as second harmonic generation (SHG), since they can generate large local electromagnetic fields while relaxing the phase-matching requirements. Here, we demonstrate visible range, continuous wave (CW) SHG by combining the attractive material properties of gallium phosphide with high quality-factor photonic modes enabled by bound states in the continuum. We obtain efficiencies around 5e-5% W-1 when the system is pumped at 1200 nm wavelength with CW intensities of 1 kW/cm2. Moreover, we measure external efficiencies of 0.1% W-1 with pump intensities of only 10 MW/cm2 for pulsed irradiation. This efficiency is higher than the values previously reported for dielectric metasurfaces, but achieved here with pump intensities that are two orders of magnitude lower. These results take metasurface-based SHG a step closer to practical applications.

7.
Opt Express ; 27(3): 2589-2603, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30732294

RESUMEN

We study polarization effects in the nonlinear interference of photons generated via frequency nondegenerate spontaneous parametric-down conversion. Signal and idler photons, which are generated in the visible and infrared (IR) range, respectively, are split into different arms of a nonlinear Michelson interferometer, and the interference pattern for signal photons is detected. Due to the effect of induced coherence, the interference pattern for the signal photons depends on the polarization rotation of idler photons, which are introduced by a birefringent sample. Based on this concept, we realize two new methods of measuring sample retardation in the IR range by using well-developed and inexpensive components for visible light. The methods' accuracy reaches specifications that are reported for industrial-grade optical elements. The developed IR polarimetry technique is relevant to material research, optical inspection, and quality control.

8.
Nano Lett ; 18(3): 2124-2132, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29485885

RESUMEN

The numerical aperture (NA) of a lens determines its ability to focus light and its resolving capability. Having a large NA is a very desirable quality for applications requiring small light-matter interaction volumes or large angular collections. Traditionally, a large NA lens based on light refraction requires precision bulk optics that ends up being expensive and is thus also a specialty item. In contrast, metasurfaces allow the lens designer to circumvent those issues producing high-NA lenses in an ultraflat fashion. However, so far, these have been limited to numerical apertures on the same order of magnitude as traditional optical components, with experimentally reported NA values of <0.9. Here we demonstrate, both numerically and experimentally, a new approach that results in a diffraction-limited flat lens with a near-unity numerical aperture (NA > 0.99) and subwavelength thickness (∼λ/3), operating with unpolarized light at 715 nm. To demonstrate its imaging capability, the designed lens is applied in a confocal configuration to map color centers in subdiffractive diamond nanocrystals. This work, based on diffractive elements that can efficiently bend light at angles as large as 82°, represents a step beyond traditional optical elements and existing flat optics, circumventing the efficiency drop associated with the standard, phase mapping approach.

9.
Opt Express ; 26(12): 15232-15246, 2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-30114773

RESUMEN

Integrated photonics platforms are crucial to the development and implementation of scalable quantum information and networking schemes, but many such devices still rely on external bulk photodetectors. We report the design and simulation of a waveguide-based single-photon avalanche diode (SPAD) for visible wavelengths. The SPAD consists of a p-n junction implemented in a doped silicon waveguide, which is end-fire coupled to an input silicon nitride waveguide. We developed a 2D Monte Carlo model to simulate the avalanche multiplication process of charge carriers following the absorption of an input photon, and calculated the photon detection efficiency (PDE) and timing jitter of the SPAD. We investigated the SPAD performance at a wavelength of 640 nm and temperature of 243K for different device dimensions and device doping configurations. For our simulated parameters, we obtained a maximum PDE of 0.45 at a reverse bias voltage of ~20 V, and full-width-half-max (FWHM) timing jitter values <8 ps.

10.
Phys Rev Lett ; 113(17): 170402, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25379904

RESUMEN

We report an experiment in which one determines, with least tomographic effort, whether an unknown two-photon polarization state is entangled or separable. The method measures whole families of optimal entanglement witnesses. We introduce adaptive measurement schemes that greatly speed up the entanglement detection. The experiments are performed on states of different ranks, and we find good agreement with results from computer simulations.

11.
Nanoscale ; 15(6): 2567-2572, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36652196

RESUMEN

Metasurfaces are artificially structured surfaces able to control the properties of light at subwavelength scales. While, initially, they have been proposed as means to control classical optical fields, they are now emerging as nanoscale sources of quantum light, in particular of entangled photons with versatile properties. Geometric resonances in metasurfaces have been recently used to engineer the frequency spectrum of entangled photons, but the emission directivity was so far less studied. Here, we generate photon pairs via spontaneous parametric down conversion from a metasurface supporting a quasi-bound state in the continuum (BIC) leading to remarkable emission directivities. The pair generation rate is enhanced 67 times compared to the case of an unpatterned film of the same thickness and material. At the wavelength of the quasi-BIC resonance, photons are mostly emitted backwards, while their partners, spectrally detuned by only 8 nm, are emitted forwards. This behavior demonstrates fine spectral splitting of entangled photons and their bi-directional emission, never before observed in nanoscale sources. We expect this work to be a starting point for the efficient demultiplexing of photons in nanoscale quantum optics.

12.
Opt Express ; 20(5): 5044-51, 2012 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-22418309

RESUMEN

We present a novel method of calibration of crosstalk probability for multi-pixel photon counters (MPPCs) based on the measurement of the normalized second-order intensity correlation function of coherent light. The method was tested for several MPPCs, and was shown to be advantageous over the traditional calibration method based on the measurements of the dark noise statistics. The method can be applied without the need of modification for different kinds of spatially resolved single photon detectors.


Asunto(s)
Artefactos , Fotometría/instrumentación , Calibración , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Fotones
13.
Opt Lett ; 37(14): 2829-31, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22825148

RESUMEN

The measurement of the two-mode squeezed vacuum generated in an optical parametric amplifier (OPA) was performed with photon number resolving multipixel photon counters (MPPCs). Implementation of the MPPCs allows for the observation of noise reduction in a broad dynamic range of the OPA gain, which is inaccessible with standard single photon avalanche photodetectors.

14.
Phys Rev Lett ; 109(11): 113601, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-23005626

RESUMEN

We analyzed the electrophysiological response of an isolated rod photoreceptor of Xenopus laevis under stimulation by coherent and pseudothermal light sources. Using the suction-electrode technique for single cell recordings and a fiber optics setup for light delivery allowed measurements of the major statistical characteristics of the rod response. The results indicate differences in average responses of rod cells to coherent and pseudothermal light of the same intensity and also differences in signal-to-noise ratios and second-order intensity correlation functions. These findings should be relevant for interdisciplinary studies seeking applications of quantum optics in biology.


Asunto(s)
Modelos Biológicos , Fotones , Células Fotorreceptoras Retinianas Bastones/fisiología , Animales , Fenómenos Electrofisiológicos , Tecnología de Fibra Óptica/instrumentación , Tecnología de Fibra Óptica/métodos , Teoría Cuántica , Rodopsina/química , Rodopsina/fisiología , Análisis de la Célula Individual/instrumentación , Análisis de la Célula Individual/métodos , Xenopus laevis
15.
Sci Rep ; 12(1): 15074, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064960

RESUMEN

Integration of single-photon emitters (SPEs) with resonant photonic structures is a promising approach for realizing compact and efficient single-photon sources for quantum communications, computing, and sensing. Efficient interaction between the SPE and the photonic cavity requires that the cavity's resonance matches the SPE's emission line. Here we demonstrate a new method for tuning silicon nitride (Si3N4) microring cavities via controlled deposition of the cladding layers. Guided by numerical simulations, we deposit silicon dioxide (SiO2) nanolayers onto Si3N4 ridge structures in steps of 50 nm. We show tuning of the cavity resonance exceeding a free spectral range (FSR) of 3.5 nm without degradation of the quality-factor (Q-factor) of the cavity. We then complement this method with localized laser heating for fine-tuning of the cavity. Finally, we verify that the cladding deposition does not alter the position and spectral properties of nanoparticles placed on the cavity, which suggests that our method can be useful for integrating SPEs with photonic structures.

16.
Opt Express ; 19(10): 9352-63, 2011 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-21643191

RESUMEN

In quantum optics and its applications, there is an urgent demand for photon-number resolving detectors. Recently, there appeared multi-pixel counters (MPPC) that are able to distinguish between 1,2,..10 photons. At the same time, strong coupling between different pixels (crosstalk) hinders their photon-number resolution. In this work, we suggest a method for `filtering out' the crosstalk effect in the measurement of intensity correlation functions. The developed approach can be expanded to the analysis of higher-order intensity correlations by using just a single MPPC.

17.
Nat Commun ; 12(1): 1834, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758190

RESUMEN

Integrated photodetectors are essential components of scalable photonics platforms for quantum and classical applications. However, most efforts in the development of such devices to date have been focused on infrared telecommunications wavelengths. Here, we report the first monolithically integrated avalanche photodetector (APD) for visible light. Our devices are based on a doped silicon rib waveguide with a novel end-fire input coupling to a silicon nitride waveguide. We demonstrate a high gain-bandwidth product of 234 ± 25 GHz at 20 V reverse bias measured for 685 nm input light, with a low dark current of 0.12 µA. We also observe open eye diagrams at up to 56 Gbps. This performance is very competitive when benchmarked against other integrated APDs operating in the infrared range. With CMOS-compatible fabrication and integrability with silicon photonic platforms, our devices are attractive for sensing, imaging, communications, and quantum applications at visible wavelengths.

18.
Nat Commun ; 12(1): 4185, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234138

RESUMEN

High harmonic generation (HHG) opens a window on the fundamental science of strong-field light-mater interaction and serves as a key building block for attosecond optics and metrology. Resonantly enhanced HHG from hot spots in nanostructures is an attractive route to overcoming the well-known limitations of gases and bulk solids. Here, we demonstrate a nanoscale platform for highly efficient HHG driven by intense mid-infrared laser pulses: an ultra-thin resonant gallium phosphide (GaP) metasurface. The wide bandgap and the lack of inversion symmetry of the GaP crystal enable the generation of even and odd harmonics covering a wide range of photon energies between 1.3 and 3 eV with minimal reabsorption. The resonantly enhanced conversion efficiency facilitates single-shot measurements that avoid material damage and pave the way to study the controllable transition between perturbative and non-perturbative regimes of light-matter interactions at the nanoscale.

19.
Light Sci Appl ; 9: 82, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411367

RESUMEN

Nonlinear interferometers with correlated photons hold promise to advance optical characterization and metrology techniques by improving their performance and affordability. These interferometers offer subshot noise phase sensitivity and enable measurements in detection-challenging regions using inexpensive and efficient components. The sensitivity of nonlinear interferometers, defined by the ability to measure small shifts of interference fringes, can be significantly enhanced by using multiple nonlinear elements, or crystal superlattices. However, to date, experiments with more than two nonlinear elements have not been realized, thus hindering the potential of nonlinear interferometers. Here, we build a nonlinear interferometer with up to five nonlinear elements, referred to as superlattices, in a highly stable and versatile configuration. We study the modification of the interference pattern for different configurations of the superlattices and perform a proof-of-concept gas sensing experiment with enhanced sensitivity. Our approach offers a viable path towards broader adoption of nonlinear interferometers with correlated photons for imaging, interferometry, and spectroscopy.

20.
Sci Adv ; 6(44)2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33127685

RESUMEN

Hyperspectral microscopy is an imaging technique that provides spectroscopic information with high spatial resolution. When applied in the relevant wavelength region, such as in the infrared (IR), it can reveal a rich spectral fingerprint across different regions of a sample. Challenges associated with low efficiency and high cost of IR light sources and detector arrays have limited its broad adoption. Here, we introduce a new approach to IR hyperspectral microscopy, where the IR spectral map is obtained with off-the-shelf components built for visible light. The method is based on the nonlinear interference of correlated photons generated via parametric down-conversion. In this proof-of-concept we demonstrate the chemical mapping of a patterned sample, where different areas have distinctive IR spectroscopic fingerprints. The method provides a wide field of view, fast readout, and negligible heat delivered to the sample, which opens prospects for its further development for applications in material and biological studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA