Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Br J Nutr ; 111(3): 535-46, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23962678

RESUMEN

The objective of the present study was to estimate ruminal feed N outflow in lactating cows using the omasal sampling, compartmental flux or in situ method. A total of five ruminally fistulated Finnish Ayrshire dairy cows were used in a 5 × 5 Latin square study with 21 d periods. Experimental silages of grass or red clover harvested at two stages of maturity in addition to a supplement of 9·0 kg concentrate/d were fed to the cows. In vivo omasal N flow was determined using the omasal sampling technique. Ruminal in situ N flow was calculated from N intake and degradability (38 µm nylon bags). The samples of ruminal contents and faeces were divided into seven particle-size fractions by wet sieving; the concentrations of indigestible neutral-detergent fibre and N were used to calculate N flow in the compartmental flux method. In vivo omasal N flow was greater for the red clover silage diets than for the grass silage diets. The N flow calculated using the compartmental flux technique and that calculated using the in situ technique were highly correlated, but both were less than and poorly correlated with the in vivo N flow. In both in situ and compartmental flux techniques, forage maturity increased the particle-associated N flow, with the increase being significantly greater for the red clover diets than for the grass silage diets. In conclusion, the compartmental flux and in situ methods described the N flow associated with the particle fractions rather than the total ruminal outflow of feed N.


Asunto(s)
Dieta/veterinaria , Digestión , Contenido Digestivo/química , Modelos Biológicos , Nitrógeno/metabolismo , Omaso/metabolismo , Ensilaje/análisis , Animales , Animales Endogámicos , Bovinos , Industria Lechera , Femenino , Finlandia , Fístula Gástrica/veterinaria , Lactancia/metabolismo , Nitrocompuestos/administración & dosificación , Nitrocompuestos/análisis , Nitrocompuestos/química , Nitrocompuestos/metabolismo , Nitrógeno/administración & dosificación , Nitrógeno/análisis , Compuestos de Nitrógeno/administración & dosificación , Compuestos de Nitrógeno/análisis , Compuestos de Nitrógeno/química , Compuestos de Nitrógeno/metabolismo , Tamaño de la Partícula , Poaceae/química , Poaceae/crecimiento & desarrollo , Reproducibilidad de los Resultados , Solubilidad , Trifolium/química , Trifolium/crecimiento & desarrollo
2.
Sci Rep ; 13(1): 4806, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959499

RESUMEN

Mitigating enteric methane (CH4) emissions is crucial as ruminants account for 5% of global greenhouse gas emissions. We hypothesised that less frequent harvesting, use of crops with lower WSC concentration, ensiling at low crop dry matter (DM) and extensive lactic acid fermentation would reduce in vitro CH4 production. Timothy (T), timothy + red clover mixture (T + RC) or perennial ryegrass (RG), cut either two or three times per season, was wilted to 22.5% or 37.5% DM and ensiled with or without formic acid-based additive. Silages were analysed for chemical composition and fermentation products. In vitro CH4 production was measured using an automated gas in vitro system. Methane production was, on average, 2.8 mL/g OM lower in the two-cut system than in the three-cut system (P < 0.001), and 1.9 mL/g OM lower in T than in RG (P < 0.001). Silage DM did not affect CH4 production (P = 0.235), but formic acid increased CH4 production by 1.2 mL/g OM compared to the untreated silage (P = 0.003). In conclusion, less frequent harvesting and extensive silage fermentation reduce in vitro CH4 production, while RG in comparison to T resulted in higher production of CH4.


Asunto(s)
Poaceae , Ensilaje , Animales , Ensilaje/análisis , Fermentación , Metano/metabolismo , Pradera , Phleum , Dieta , Rumen/metabolismo , Digestión
3.
Animals (Basel) ; 11(9)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34573563

RESUMEN

This study examined the effects of partly replacing grass silage (GS) with maize silage (MS), with or without rapeseed oil (RSO) supplementation, on methane (CH4) emissions, production performance, and rumen microbiome in the diets of lactating dairy cows. The effect of individual pre-trial CH4-emitting characteristics on dietary emissions mitigation was also examined. Twenty Nordic Red cows at 71 ± 37.2 (mean ± SD) days in milk were assigned to a replicated 4 × 4 Latin square design with four dietary treatments (GS, GS supplemented with RSO, GS plus MS, GS plus MS supplemented with RSO) applied in a 2 × 2 factorial arrangement. Partial replacement of GS with MS decreased the intake of dry matter (DM) and nutrients, milk production, yield of milk components, and general nutrient digestibility. Supplementation with RSO decreased the intake of DM and nutrients, energy-corrected milk yield, composition and yield of milk fat and protein, and general digestibility of nutrients, except for crude protein. Individual cow pre-trial measurements of CH4-emitting characteristics had a significant influence on gas emissions but did not alter the magnitude of CH4 emissions. Dietary RSO decreased daily CH4, yield, and intensity. It also increased the relative abundance of rumen Methanosphaera and Succinivibrionaceae and decreased that of Bifidobacteriaceae. There were no effects of dietary MS on CH4 emissions in this study, but supplementation with 41 g RSO/kg of DM reduced daily CH4 emissions from lactating dairy cows by 22.5%.

4.
Animals (Basel) ; 11(5)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063117

RESUMEN

This study evaluated potential trade-offs between enteric methane (CH4) emissions and CH4 emissions from feces of dairy cows fed grass silage or partial replacement of grass silage with corn silage, both with and without supplementation of rapeseed oil. Measured data for eight dairy cows (two blocks) included in a production trial were analyzed. Dietary treatments were grass silage (GS), GS supplemented with rapeseed oil (GS-RSO), GS plus corn silage (GSCS), and GSCS supplemented with rapeseed oil (GSCS-RSO). Feces samples were collected after each period and incubated for nine weeks to estimate fecal CH4 emissions. Including RSO (0.5 kg/d) in the diet decreased dry matter intake (DMI) by 1.75 kg/d. Enteric CH4 emissions were reduced by inclusion of RSO in the diet (on average 473 vs. 607 L/d). In 9-week incubations, there was a trend for lower CH4 emissions from feces of cows fed diets supplemented with RSO (on average 3.45 L/kg DM) than cows with diets not supplemented with RSO (3.84 L/kg DM). Total CH4 emissions (enteric + feces, L/d) were significantly lower for the cows fed diets supplemented with RSO. Total fecal CH4 emissions were similar between treatments, indicating no trade-offs between enteric and fecal CH4 emissions.

5.
Animals (Basel) ; 10(12)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353097

RESUMEN

Seaweeds contain a myriad of nutrients and bioactives including proteins, carbohydrates and to a lesser extent lipids as well as small molecules including peptides, saponins, alkaloids and pigments. The bioactive bromoform found in the red seaweed Asparagopsis taxiformis has been identified as an agent that can reduce enteric CH4 production from livestock significantly. However, sustainable supply of this seaweed is a problem and there are some concerns over its sustainable production and potential negative environmental impacts on the ozone layer and the health impacts of bromoform. This review collates information on seaweeds and seaweed bioactives and the documented impact on CH4 emissions in vitro and in vivo as well as associated environmental, economic and health impacts.

6.
Animals (Basel) ; 9(12)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835803

RESUMEN

We assessed and ranked different dietary strategies for mitigating methane (CH4) emissions and other fermentation parameters, using an automated gas system in two in vitro experiments. In experiment 1, a wide range of dietary CH4 mitigation strategies was tested. In experiment 2, the two most promising CH4 inhibitory compounds from experiment 1 were tested in a dose-response study. In experiment 1, the chemical compounds 2-nitroethanol, nitrate, propynoic acid, p-coumaric acid, bromoform, and Asparagopsis taxiformis (AT) decreased predicted in vivo CH4 production (1.30, 21.3, 13.9, 24.2, 2.00, and 0.20 mL/g DM, respectively) compared with the control diet (38.7 mL/g DM). The 2-nitroethanol and AT treatments had lower molar proportions of acetate and higher molar proportions of propionate and butyrate compared with the control diet. In experiment 2, predicted in vivo CH4 production decreased curvilinearly, molar proportions of acetate decreased, and propionate and butyrate proportions increased curvilinearly with increased levels of AT and 2-nitroethanol. Thus 2-nitroethanol and AT were the most efficient strategies to reduce CH4 emissions in vitro, and AT inclusion additionally showed a strong dose-dependent CH4 mitigating effect, with the least impact on rumen fermentation parameters.

7.
Ecol Evol ; 8(8): 4183-4196, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29721290

RESUMEN

Evolutionary morphological and physiological differences between browsers and grazers contribute to species-specific digestion efficiency of food resources. Rumen microbial community structure of browsers is supposedly adapted to characteristic nutrient composition of the diet source. If this assumption is correct, domesticated ruminants, or grazers, are poor model animals for assessing the nutritional value of food consumed by browsing game species. In this study, typical spring and summer foods of the European moose (Alces alces) were combined with rumen fluid collected from both dairy cows (Bos taurus) and from moose, with the aim of comparing fermentation efficiency and microbial community composition. The nutritional value of the food resources was characterized by chemical analysis and advanced in vitro measurements. The study also addressed whether or not feed evaluation based on in vitro techniques with cattle rumen fluid as inoculum could be a practical alternative when evaluating the nutritional value of plants consumed by wild browsers. Our results suggest that the fermentation characteristics of moose spring and summer food are partly host-specific and related to the contribution of the bacterial phyla Firmicutes and Bacteriodetes to the rumen microbial community. Host-specific adaptations of the ruminal microbial community structure could be explained from the evolutionary adaptations related to feeding habitats and morphophysiological differences between browsers and grazers. However, the observed overall differences in microbial community structure could not be related to ruminal digestion parameters measured in vitro. The in vitro evaluation of digestion efficiency reveals that equal amounts of methane were produced across all feed samples regardless of whether the ruminal fluid was from moose or dairy cow. The results of this study suggested that the nutritional value of browsers' spring and summer food can be predicted using rumen fluid from domesticated grazers as inoculum in in vitro assessments of extent of digestion when excluding samples of the white water lily root, but not of fermentation characteristics as indicated by the proportions of individual fermentation fatty acids to the total of volatile fatty acids.

8.
Front Microbiol ; 9: 2161, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319557

RESUMEN

The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages. These microbes interact closely to breakdown plant material that cannot be digested by humans, whilst providing metabolic energy to the host and, in the case of archaea, producing methane. Consequently, ruminants produce meat and milk, which are rich in high-quality protein, vitamins and minerals, and therefore contribute to food security. As the world population is predicted to reach approximately 9.7 billion by 2050, an increase in ruminant production to satisfy global protein demand is necessary, despite limited land availability, and whilst ensuring environmental impact is minimized. Although challenging, these goals can be met, but depend on our understanding of the rumen microbiome. Attempts to manipulate the rumen microbiome to benefit global agricultural challenges have been ongoing for decades with limited success, mostly due to the lack of a detailed understanding of this microbiome and our limited ability to culture most of these microbes outside the rumen. The potential to manipulate the rumen microbiome and meet global livestock challenges through animal breeding and introduction of dietary interventions during early life have recently emerged as promising new technologies. Our inability to phenotype ruminants in a high-throughput manner has also hampered progress, although the recent increase in "omic" data may allow further development of mathematical models and rumen microbial gene biomarkers as proxies. Advances in computational tools, high-throughput sequencing technologies and cultivation-independent "omics" approaches continue to revolutionize our understanding of the rumen microbiome. This will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges.

9.
PLoS One ; 11(3): e0150870, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26986618

RESUMEN

The nutrient balancing hypothesis proposes that, when sufficient food is available, the primary goal of animal diet selection is to obtain a nutritionally balanced diet. This hypothesis can be tested using the Geometric Framework for nutrition (GF). The GF enables researchers to study patterns of nutrient intake (e.g. macronutrients; protein, carbohydrates, fat), interactions between the different nutrients, and how an animal resolves the potential conflict between over-eating one or more nutrients and under-eating others during periods of dietary imbalance. Using the moose (Alces alces L.), a model species in the development of herbivore foraging theory, we conducted a feeding experiment guided by the GF, combining continuous observations of six captive moose with analysis of the macronutritional composition of foods. We identified the moose's self-selected macronutrient target by allowing them to compose a diet by mixing two nutritionally complementary pellet types plus limited access to Salix browse. Such periods of free choice were intermixed with periods when they were restricted to one of the two pellet types plus Salix browse. Our observations of food intake by moose given free choice lend support to the nutrient balancing hypothesis, as the moose combined the foods in specific proportions that provided a particular ratio and amount of macronutrients. When restricted to either of two diets comprising a single pellet type, the moose i) maintained a relatively stable intake of non-protein energy while allowing protein intakes to vary with food composition, and ii) increased their intake of the food item that most closely resembled the self-selected macronutrient intake from the free choice periods, namely Salix browse. We place our results in the context of the nutritional strategy of the moose, ruminant physiology and the categorization of food quality.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Ciervos/fisiología , Herbivoria , Animales , Dieta , Proteínas en la Dieta/metabolismo , Ingestión de Energía , Femenino , Masculino , Modelos Biológicos , Estado Nutricional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA