Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nat Chem Biol ; 17(2): 196-204, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33106661

RESUMEN

The calcium release activated calcium channel is activated by the endoplasmic reticulum-resident calcium sensor protein STIM1. On activation, STIM1 C terminus changes from an inactive, tight to an active, extended conformation. A coiled-coil clamp involving the CC1 and CC3 domains is essential in controlling STIM1 activation, with CC1 as the key entity. The nuclear magnetic resonance-derived solution structure of the CC1 domain represents a three-helix bundle stabilized by interhelical contacts, which are absent in the Stormorken disease-related STIM1 R304W mutant. Two interhelical sites between the CC1α1 and CC1α2 helices are key in controlling STIM1 activation, affecting the balance between tight and extended conformations. Nuclear magnetic resonance-directed mutations within these interhelical interactions restore the physiological, store-dependent activation behavior of the gain-of-function STIM1 R304W mutant. This study reveals the functional impact of interhelical interactions within the CC1 domain for modifying the CC1-CC3 clamp strength to control the activation of STIM1.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Proteínas de Neoplasias/genética , Molécula de Interacción Estromal 1/genética , Trastornos de las Plaquetas Sanguíneas/genética , Clonación Molecular , Dislexia/genética , Eritrocitos Anormales , Células HEK293 , Humanos , Ictiosis/genética , Espectroscopía de Resonancia Magnética , Trastornos Migrañosos/genética , Miosis/genética , Modelos Moleculares , Fatiga Muscular/genética , Mutación/genética , Conformación de Ácido Nucleico , Proteína ORAI1/genética , Técnicas de Placa-Clamp , Bazo/anomalías
2.
Cell Mol Life Sci ; 78(19-20): 6645-6667, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34498097

RESUMEN

The calcium release-activated calcium (CRAC) channel consists of STIM1, a Ca2+ sensor in the endoplasmic reticulum (ER), and Orai1, the Ca2+ ion channel in the plasma membrane. Ca2+ store depletion triggers conformational changes and oligomerization of STIM1 proteins and their direct interaction with Orai1. Structural alterations include the transition of STIM1 C-terminus from a folded to an extended conformation thereby exposing CAD (CRAC activation domain)/SOAR (STIM1-Orai1 activation region) for coupling to Orai1. In this study, we discovered that different point mutations of F394 in the small alpha helical segment (STIM1 α2) within the CAD/SOAR apex entail a rich plethora of effects on diverse STIM1 activation steps. An alanine substitution (STIM1 F394A) destabilized the STIM1 quiescent state, as evident from its constitutive activity. Single point mutation to hydrophilic, charged amino acids (STIM1 F394D, STIM1 F394K) impaired STIM1 homomerization and subsequent Orai1 activation. MD simulations suggest that their loss of homomerization may arise from altered formation of the CC1α1-SOAR/CAD interface and potential electrostatic interactions with lipid headgroups in the ER membrane. Consistent with these findings, we provide experimental evidence that the perturbing effects of F394D depend on the distance of the apex from the ER membrane. Taken together, our results suggest that the CAD/SOAR apex is in the immediate vicinity of the ER membrane in the STIM1 quiescent state and that different mutations therein can impact the STIM1/Orai1 activation cascade in various manners. Legend: Upon intracellular Ca2+ store depletion of the endoplasmic reticulum (ER), Ca2+ dissociates from STIM1. As a result, STIM1 adopts an elongated conformation and elicits Ca2+ influx from the extracellular matrix (EM) into the cell due to binding to and activation of Ca2+-selective Orai1 channels (left). The effects of three point mutations within the SOARα2 domain highlight the manifold roles of this region in the STIM1/Orai1 activation cascade: STIM1 F394A is active irrespective of the intracellular ER Ca2+ store level, but activates Orai1 channels to a reduced extent (middle). On the other hand, STIM1 F394D/K cannot adopt an elongated conformation upon Ca2+ store-depletion due to altered formation of the CC1α1-SOAR/CAD interface and/or electrostatic interaction of the respective side-chain charge with corresponding opposite charges on lipid headgroups in the ER membrane (right).


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio/genética , Proteínas de Neoplasias/genética , Molécula de Interacción Estromal 1/genética , Calcio/metabolismo , Canales de Calcio/genética , Línea Celular , Membrana Celular/genética , Retículo Endoplásmico/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Mutación Puntual/genética
3.
Phys Chem Chem Phys ; 23(45): 25830-25840, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34762087

RESUMEN

The SecYEG translocon is a channel in bacteria, which provides a passage for secretory proteins across as well as integration of membrane proteins into the plasma membrane. The molecular mechanism, by which SecYEG manages protein transport while preventing water and ion leakage through the membrane, is still controversial. We employed molecular dynamics simulations to assess the contribution of the major structural elements - the plug and the pore ring (PR) - to the sealing of SecYEG in the active state, i.e., with a signal sequence helix occupying the lateral gate. We found, that the PR alone can provide a very tight seal for the wild-type translocon in the active state for both water and ions. Simulations of the mutant I403N, in which one of the PR-defining isoleucine residues is replaced with asparagine, suggest that hydrophobic interactions within the PR and between the PR and the plug are important for maintaining a tight conformation of the wild-type channel around the PR. Disruption of these interactions results in strong fluctuations of helix TM7 and water leakage of the translocon.


Asunto(s)
Simulación de Dinámica Molecular , Canales de Translocación SEC/química , Thermus thermophilus/química , Conformación Proteica , Canales de Translocación SEC/metabolismo
4.
PLoS Comput Biol ; 12(6): e1004960, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27253392

RESUMEN

Deciphering the effects of nonsynonymous mutations on protein structure is central to many areas of biomedical research and is of fundamental importance to the study of molecular evolution. Much of the investigation of protein evolution has focused on mutations that leave a protein's folded structure essentially unchanged. However, to evolve novel folds of proteins, mutations that lead to large conformational modifications have to be involved. Unraveling the basic biophysics of such mutations is a challenge to theory, especially when only one or two amino acid substitutions cause a large-scale conformational switch. Among the few such mutational switches identified experimentally, the one between the GA all-α and GB α+ß folds is extensively characterized; but all-atom simulations using fully transferrable potentials have not been able to account for this striking switching behavior. Here we introduce an explicit-chain model that combines structure-based native biases for multiple alternative structures with a general physical atomic force field, and apply this construct to twelve mutants spanning the sequence variation between GA and GB. In agreement with experiment, we observe conformational switching from GA to GB upon a single L45Y substitution in the GA98 mutant. In line with the latent evolutionary potential concept, our model shows a gradual sequence-dependent change in fold preference in the mutants before this switch. Our analysis also indicates that a sharp GA/GB switch may arise from the orientation dependence of aromatic π-interactions. These findings provide physical insights toward rationalizing, predicting and designing evolutionary conformational switches.


Asunto(s)
Evolución Molecular , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Genes de Cambio/genética , Inestabilidad Genómica/genética , Modelos Químicos , Simulación por Computador , Proteínas de Unión al GTP/ultraestructura , Variación Genética , Modelos Genéticos , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Análisis de Secuencia de Proteína/métodos
5.
Biochemistry ; 55(45): 6269-6281, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27775315

RESUMEN

Volumetric properties of proteins bear directly on their biological functions in hyperbaric environments and are useful in general as a biophysical probe. To gain insight into conformation-dependent protein volume, we developed an implicit-solvent atomic chain model that transparently embodies two physical origins of volume: (1) a fundamental geometric term capturing the van der Waals volume of the protein and the particulate, finite-size nature of the water molecules, modeled together by the volume encased by the protein's molecular surface, and (2) a physicochemical term for other solvation effects, accounted for by empirical proportionality relationships between experimental partial molar volumes and solvent-accessible surface areas of model compounds. We tested this construct by Langevin dynamics simulations of a 16-residue polyalanine. The simulated trajectories indicate an average volume decrease of 1.73 ± 0.1 Å3/residue for coil-helix transition, ∼80% of which is caused by a decrease in geometric void/cavity volume, and a robust positive activation volume for helical hydrogen bond formation originating from the transient void created by an approaching donor-acceptor pair and nearby atoms. These findings are consistent with prior experiments with alanine-rich peptides and offer an atomistic analysis of the observed overall volume changes. The results suggest, in general, that hydrostatic pressure likely stabilizes helical conformations of short peptides but slows the process of helix formation. In contrast, hydrostatic pressure is more likely to destabilize natural globular proteins because of the void volume entrapped in their folded structures. The conceptual framework of our model thus affords a coherent physical rationalization for experiments.


Asunto(s)
Péptidos/química , Fenómenos Físicos , Estructura Secundaria de Proteína , Proteínas/química , Algoritmos , Enlace de Hidrógeno , Presión Hidrostática , Cinética , Modelos Químicos , Modelos Moleculares , Conformación Proteica , Solventes/química , Termodinámica , Agua/química
6.
PLoS Comput Biol ; 10(5): e1003606, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24809460

RESUMEN

A major component of ex vivo amyloid plaques of patients with dialysis-related amyloidosis (DRA) is a cleaved variant of ß2-microglobulin (ΔN6) lacking the first six N-terminal residues. Here we perform a computational study on ΔN6, which provides clues to understand the amyloidogenicity of the full-length ß2-microglobulin. Contrary to the wild-type form, ΔN6 is able to efficiently nucleate fibrillogenesis in vitro at physiological pH. This behavior is enhanced by a mild acidification of the medium such as that occurring in the synovial fluid of DRA patients. Results reported in this work, based on molecular simulations, indicate that deletion of the N-terminal hexapeptide triggers the formation of an intermediate state for folding and aggregation with an unstructured strand A and a native-like core. Strand A plays a pivotal role in aggregation by acting as a sticky hook in dimer assembly. This study further predicts that the detachment of strand A from the core is maximized at pH 6.2 resulting into higher aggregation efficiency. The structural mapping of the dimerization interface suggests that Tyr10, His13, Phe30 and His84 are hot-spot residues in ΔN6 amyloidogenesis.


Asunto(s)
Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/ultraestructura , Modelos Químicos , Modelos Moleculares , Microglobulina beta-2/química , Microglobulina beta-2/ultraestructura , Sitios de Unión , Simulación por Computador , Dimerización , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína
7.
Phys Chem Chem Phys ; 17(5): 3512-24, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25536450

RESUMEN

This work investigates the role of N- to C- termini coupling in the folding transition of small, single domain proteins via extensive Monte Carlo simulations of both lattice and off-lattice models. The reported results provide compelling evidence that the existence of native interactions between the terminal regions of the polypeptide chain (i.e. termini coupling) is a major determinant of the height of the free energy barrier that separates the folded from the denatured state in a two-state folding transition, therefore being a critical modulator of protein folding rates and thermodynamic cooperativity. We further report that termini interactions are able to substantially modify the kinetic behavior dictated by the full set of native interactions. Indeed, a native structure of high contact order with "switched-off" termini-interactions actually folds faster than its circular permutant of lowest CO.


Asunto(s)
Proteínas/química , Cinética , Método de Montecarlo , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas/metabolismo , Termodinámica
8.
Phys Biol ; 10(1): 016002, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23283414

RESUMEN

We assessed the interplay of native topology and non-native interactions on surface-tethered protein folding via extensive Monte Carlo simulations of a simple lattice model. In particular, we investigated the thermodynamics and kinetics of protein-like sequences enclosing different amounts of non-native interactions to protein energetics, and which were designed to fold to distinct native topologies. Our results show that the high-contact order (CO) structure renders a folding transition that is robust to (external) steric constraints and non-native interactions. On the other hand, the folding process of the simple low-CO topology can be easily hampered by the presence of a nearby chemically inert plane. In this case, if non-native interactions are highly conspicuous during folding they can actually drive chain collapse into a very native-like trapped state, which impedes the formation of the native structure. The analysis of folding kinetics reveals that the empirical correlation between folding rate and CO may not apply to surface-tethered protein folding. Indeed, results reported here show that depending on the native environment of the tethered chain terminus the folding rate of a low-CO topology can become so drastically small that the high-CO topology actually folds faster under the same conditions. We predict that complex topologies are more likely to conserve their bulk folding mechanism upon surface tethering.


Asunto(s)
Modelos Moleculares , Pliegue de Proteína , Proteínas/química , Simulación por Computador , Cinética , Método de Montecarlo , Estructura Terciaria de Proteína , Termodinámica
9.
J Chem Phys ; 138(21): 215101, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23758397

RESUMEN

We performed extensive lattice Monte Carlo simulations of ribosome-bound stalled nascent chains (RNCs) to explore the relative roles of native topology and non-native interactions in co-translational folding of small proteins. We found that the formation of a substantial part of the native structure generally occurs towards the end of protein synthesis. However, multi-domain structures, which are rich in local interactions, are able to develop gradually during chain elongation, while those with proximate chain termini require full protein synthesis to fold. A detailed assessment of the conformational ensembles populated by RNCs with different lengths reveals that the directionality of protein synthesis has a fine-tuning effect on the probability to populate low-energy conformations. In particular, if the participation of non-native interactions in folding energetics is mild, the formation of native-like conformations is majorly determined by the properties of the contact map around the tethering terminus. Likewise, a pair of RNCs differing by only 1-2 residues can populate structurally well-resolved low energy conformations with significantly different probabilities. An interesting structural feature of these low-energy conformations is that, irrespective of native structure, their non-native interactions are always long-ranged and marginally stabilizing. A comparison between the conformational spectra of RNCs and chain fragments folding freely in the bulk reveals drastic changes amongst the two set-ups depending on the native structure. Furthermore, they also show that the ribosome may enhance (up to 20%) the population of low energy conformations for chains folding to native structures dominated by local interactions. In contrast, a RNC folding to a non-local topology is forced to remain largely unstructured but can attain low energy conformations in bulk.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas/química , Método de Montecarlo , Conformación Proteica , Pliegue de Proteína
10.
Protein Sci ; 32(3): e4571, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36691702

RESUMEN

Stromal interaction molecule 1 (STIM1) resides in the endoplasmic reticulum (ER) membrane and senses luminal calcium (Ca2+ ) concentration. STIM1 activation involves a large-scale conformational transition that exposes a STIM1 domain termed "CAD/SOAR", - which is required for activation of the calcium channel Orai. Under resting cell conditions, STIM1 assumes a quiescent state where CAD/SOAR is suspended in an intramolecular clamp formed by the coiled-coil 1 domain (CC1) and CAD/SOAR. Here, we present a structural model of the cytosolic part of the STIM1 resting state using molecular docking simulations that take into account previously reported interaction sites between the CC1α1 and CAD/SOAR domains. We corroborate and refine previously reported interdomain coiled-coil contacts. Based on our model, we provide a detailed analysis of the CC1-CAD/SOAR binding interface using molecular dynamics simulations. We find a very similar binding interface for a proposed domain-swapped configuration of STIM1, where the CAD/SOAR domain of one monomer interacts with the CC1α1 domain of another monomer of STIM1. The rich structural and dynamical information obtained from our simulations reveals novel interaction sites such as M244, I409, or E370, which are crucial for STIM1 quiescent state stability. We tested our predictions by electrophysiological and Förster resonance energy transfer experiments on corresponding single-point mutants. These experiments provide compelling support for the structural model of the STIM1 quiescent state reported here. Based on transitions observed in enhanced-sampling simulations paired with an analysis of the quiescent STIM1 conformational dynamics, our work offers a first atomistic model for CC1α1-CAD/SOAR detachment.


Asunto(s)
Canales de Calcio , Calcio , Humanos , Calcio/metabolismo , Canales de Calcio/metabolismo , Células HEK293 , Simulación del Acoplamiento Molecular , Proteína ORAI1/metabolismo , Dominios Proteicos , Molécula de Interacción Estromal 1/química , Molécula de Interacción Estromal 1/metabolismo
11.
Sci Signal ; 16(771): eadd0509, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36749824

RESUMEN

Stormorken syndrome is a multiorgan hereditary disease caused by dysfunction of the endoplasmic reticulum (ER) Ca2+ sensor protein STIM1, which forms the Ca2+ release-activated Ca2+ (CRAC) channel together with the plasma membrane channel Orai1. ER Ca2+ store depletion activates STIM1 by releasing the intramolecular "clamp" formed between the coiled coil 1 (CC1) and CC3 domains of the protein, enabling the C terminus to extend and interact with Orai1. The most frequently occurring mutation in patients with Stormorken syndrome is R304W, which destabilizes and extends the STIM1 C terminus independently of ER Ca2+ store depletion, causing constitutive binding to Orai1 and CRAC channel activation. We found that in cis deletion of one amino acid residue, Glu296 (which we called E296del) reversed the pathological effects of R304W. Homozygous Stim1 E296del+R304W mice were viable and phenotypically indistinguishable from wild-type mice. NMR spectroscopy, molecular dynamics simulations, and cellular experiments revealed that although the R304W mutation prevented CC1 from interacting with CC3, the additional deletion of Glu296 opposed this effect by enabling CC1-CC3 binding and restoring the CC domain interactions within STIM1 that are critical for proper CRAC channel function. Our results provide insight into the activation mechanism of STIM1 by clarifying the molecular basis of mutation-elicited protein dysfunction and pathophysiology.


Asunto(s)
Canales de Calcio Activados por la Liberación de Calcio , Proteínas de la Membrana , Ratones , Animales , Proteínas de la Membrana/metabolismo , Canales de Calcio/metabolismo , Aminoácidos/metabolismo , Mutación , Retículo Endoplásmico/metabolismo , Molécula de Interacción Estromal 1/genética , Canales de Calcio Activados por la Liberación de Calcio/genética , Proteína ORAI1/metabolismo , Calcio/metabolismo
12.
PLoS One ; 6(8): e23284, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21858057

RESUMEN

Submicron scale domains of membrane-anchored receptors play an important role in cell signaling. Central questions concern the stability of these microdomains, and the mechanisms leading to the domain formation. In immune-cell adhesion zones, microdomains of short receptor-ligand complexes form next to domains of significantly longer receptor-ligand complexes. The length mismatch between the receptor-ligand complexes leads to membrane deformations and has been suggested as a possible cause of the domain formation. The domain formation is a nucleation and growth process that depends on the line tension and free energy of the domains. Using a combination of analytical calculations and Monte Carlo simulations, we derive here general expressions for the line tension between domains of long and short receptor-ligand complexes and for the adhesion free energy of the domains. We argue that the length mismatch of receptor-ligand complexes alone is sufficient to drive the domain formation, and obtain submicron-scale minimum sizes for stable domains that are consistent with the domain sizes observed during immune-cell adhesion.


Asunto(s)
Algoritmos , Microdominios de Membrana/metabolismo , Modelos Biológicos , Receptores de Superficie Celular/metabolismo , Animales , Adhesión Celular , Membrana Celular/química , Membrana Celular/metabolismo , Simulación por Computador , Humanos , Ligandos , Microdominios de Membrana/química , Método de Montecarlo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Tensión Superficial , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA