RESUMEN
The role and outcome of the muscarinic M2 acetylcholine receptor (M2R) signaling in healthy and diseased cardiomyocytes is still a matter of debate. Here, we report that the long isoform of the regulator of G protein signaling 3 (RGS3L) functions as a switch in the muscarinic signaling, most likely of the M2R, in primary cardiomyocytes. High levels of RGS3L, as found in heart failure, redirect the Gi-mediated Rac1 activation into a Gi-mediated RhoA/ROCK activation. Functionally, this switch resulted in a reduced production of reactive oxygen species (- 50%) in cardiomyocytes and an inotropic response (+ 18%) in transduced engineered heart tissues. Importantly, we could show that an adeno-associated virus 9-mediated overexpression of RGS3L in rats in vivo, increased the contractility of ventricular strips by maximally about twofold. Mechanistically, we demonstrate that this switch is mediated by a complex formation of RGS3L with the GTPase-activating protein p190RhoGAP, which balances the activity of RhoA and Rac1 by altering its substrate preference in cardiomyocytes. Enhancement of this complex formation could open new possibilities in the regulation of the contractility of the diseased heart.
Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Animales , Colinérgicos , Ventrículos Cardíacos , Ratas , Receptores MuscarínicosRESUMEN
How GPCRs and G proteins interact is important for their biologic functions and their functions as pharmacologic targets. It is still an open question whether receptors and G proteins are preassembled in a complex or interact only after receptor activation. We compared the propensity of the two Gs-coupled serotonin (5-HT) receptors 5-HT4 and 5-HT7 to associate with G protein prior to agonist activation. Combining receptor-immobilized fluorescence recovery after photobleaching and fluorescence resonance energy transfer methodologies, we observed that 5-HT7 receptors markedly reduced the diffusion of both Gα and Gßγ at the cell surface, which indicated 5-HT7 receptor preassociation with Gs. This is in sharp contrast to the 5-HT4 receptor for which the diffusion of Gαßγ was not modified, and agonist activation brought together the receptor and Gγ, which is consistent with interaction by collision coupling. Agonist activation of 5-HT7 dissociated Gγ from the receptor, whereas Gαs underwent a rapid conformational change with respect to both Gγ and the receptor, followed by a slower dissociation of Gγ from both Gαs and the receptor. Taken together, these data demonstrate a different propensity among receptors to preassociate with G protein in the absence of ligand and reveals a rapid conformational change in Gαs upon activation by the receptor.-Andressen, K. W., Ulsund, A. H., Krobert, K. A., Lohse, M. J., Bünemann, M., Levy, F. O. Related GPCRs couple differently to Gs: preassociation between G protein and 5-HT7 serotonin receptor reveals movement of Gαs upon receptor activation.
Asunto(s)
Cromograninas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptores de Serotonina/metabolismo , Cromograninas/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Células HEK293 , Humanos , Receptores de Serotonina/genética , Receptores de Serotonina 5-HT4/genética , Receptores de Serotonina 5-HT4/metabolismoRESUMEN
Targeted temperature management is part of the standardized treatment for patients in cardiac arrest. Hypothermia decreases cerebral oxygen consumption and induces bradycardia; thus, increasing the heart rate may be considered to maintain cardiac output. We hypothesized that increasing heart rate during hypothermia would impair diastolic function. Human left ventricular trabeculae obtained from explanted hearts of patients with terminal heart failure were stimulated at 0.5 Hz, and contraction-relaxation cycles were recorded. Maximal developed force (Fmax), maximal rate of development of force [(dF/d t)max], time to peak force (TPF), time to 80% relaxation (TR80), and relaxation time (RT = TR80 - TPF) were measured at 37, 33, 31, and 29°C. At these temperatures, stimulation frequency was increased from 0.5 to 1.0 and to 1.5 Hz. At 1.5 Hz, concentration-response curves for the ß-adrenergic receptor (ß-AR) agonist isoproterenol were performed. Fmax, TPF, and RT increased when temperature was lowered, whereas (dF/d t)max decreased. At all temperatures, increasing stimulation frequency increased Fmax and (dF/d t)max, whereas TPF and RT decreased. At 31 and 29°C, resting tension increased at 1.5 Hz, which was ameliorated by ß-AR stimulation. At all temperatures, maximal ß-AR stimulation increased Fmax, (dF/d t)max, and maximal systolic force, whereas resting tension decreased progressively with lowering temperature. ß-AR stimulation reduced TPF and RT to the same extent at all temperatures, despite the more elongated contraction-relaxation cycle at lower temperatures. Diastolic dysfunction during hypothermia results from an elongation of the contraction-relaxation cycle, which decreases the time for ventricular filling. Hypothermic bradycardia protects the heart from diastolic dysfunction and increasing the heart rate during hypothermia should be avoided. NEW & NOTEWORTHY Decreasing temperature increases the duration of the contraction-relaxation cycle in the human ventricular myocardium, significantly reducing the time for ventricular filling during diastole. During hypothermia, increasing heart rate further reduces the time for ventricular filling and in some situations increases resting tension further impairing diastolic function. Modest ß-adrenergic receptor stimulation can ameliorate these potentially detrimental changes during diastole while improving contractile force generation during targeted temperature management.
Asunto(s)
Insuficiencia Cardíaca/terapia , Frecuencia Cardíaca , Hipotermia Inducida , Contracción Miocárdica , Función Ventricular Izquierda , Adolescente , Agonistas Adrenérgicos beta/farmacología , Adulto , Estimulación Cardíaca Artificial , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/fisiopatología , Diástole , Femenino , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Técnicas In Vitro , Isoproterenol/farmacología , Masculino , Persona de Mediana Edad , Contracción Miocárdica/efectos de los fármacos , Sístole , Factores de Tiempo , Función Ventricular Izquierda/efectos de los fármacosRESUMEN
Transgenic mice with cardiac-specific expression of a peptide inhibitor of G protein-coupled receptor kinase (GRK)3 [transgenic COOH-terminal GRK3 (GRK3ct) mice] display myocardial hypercontractility without hypertrophy and enhanced α(1)-adrenergic receptor signaling. A role for GRK3 in the pathogenesis of heart failure (HF) has not been investigated, but inhibition of its isozyme, GRK2, has been beneficial in several HF models. Here, we tested whether inhibition of GRK3 modulated evolving cardiac hypertrophy and dysfunction after pressure overload. Weight-matched male GRK3ct transgenic and nontransgenic littermate control (NLC) mice subjected to chronic pressure overload by abdominal aortic banding (AB) were compared with sham-operated (SH) mice. At 6 wk after AB, a significant increase of cardiac mass consistent with induction of hypertrophy was found, but no differences between GRK3ct-AB and NLC-AB mice were discerned. Simultaneous left ventricular (LV) pressure-volume analysis of electrically paced, ex vivo perfused working hearts revealed substantially reduced systolic and diastolic function in NLC-AB mice (n = 7), which was completely preserved in GRK3ct-AB mice (n = 7). An additional cohort was subjected to in vivo cardiac catheterization and LV pressure-volume analysis at 12 wk after AB. NLC-AB mice (n = 11) displayed elevated end-diastolic pressure (8.5 ± 3.1 vs. 2.9 ± 1.2 mmHg, P < 0.05), reduced cardiac output (3,448 ± 323 vs. 4,488 ± 342 µl/min, P < 0.05), and reduced dP/dt(max) and dP/dt(min) (both P < 0.05) compared with GRK3ct-AB mice (n = 16), corroborating the preserved cardiac structure and function observed in GRK3ct-AB hearts assessed ex vivo. Increased cardiac mass and myocardial mRNA expression of ß-myosin heavy chain confirmed the similar induction of cardiac hypertrophy in both AB groups, but only NLC-AB hearts displayed significantly elevated mRNA levels of brain natriuretic peptide and myocardial collagen contents as well as reduced ß(1)-adrenergic receptor responsiveness to isoproterenol, indicating increased LV wall stress and the transition to HF. Inhibition of cardiac GRK3 in mice does not alter the hypertrophic response but attenuates cardiac dysfunction and HF after chronic pressure overload.
Asunto(s)
Quinasa 3 del Receptor Acoplado a Proteína-G/fisiología , Cardiopatías/tratamiento farmacológico , Hipertensión/complicaciones , Miocitos Cardíacos/fisiología , Adenilil Ciclasas/metabolismo , Agonistas Adrenérgicos beta/farmacología , Animales , Cardiomegalia/etiología , Cardiomegalia/patología , Fibrosis Endomiocárdica/patología , Quinasa 3 del Receptor Acoplado a Proteína-G/antagonistas & inhibidores , Quinasa 3 del Receptor Acoplado a Proteína-G/genética , Cardiopatías/etiología , Cardiopatías/fisiopatología , Insuficiencia Cardíaca/prevención & control , Inmunohistoquímica , Isoproterenol/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Miocardio/enzimología , Miocardio/metabolismo , Miocitos Cardíacos/enzimología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Función Ventricular Izquierda/fisiologíaRESUMEN
Prostaglandins have displayed both beneficial and detrimental effects in clinical studies in patients with severe heart failure. Prostaglandins are known to increase cardiac output, but the mechanism is not clarified. Here, we tested the hypothesis that prostaglandins can increase contractility in human heart by amplifying cAMP-dependent inotropic responses. Contractility was measured ex vivo in isolated left ventricular strips and phosphodiesterase (PDE) and adenylyl cyclase (AC) activity was measured in homogenates or membranes from failing human left ventricles. PGE(1) (1 µM) alone did not modify contractility, but given prior, amplified maximal serotonin (5-HT)-evoked (10 µM) contractile responses mediated by 5-HT(4) receptors several fold (24 ± 7 % with PGE(1) vs. 3 ± 2 % above basal with 5-HT alone). The 5-HT(4)-mediated inotropic response was amplified by the PDE3 inhibitor cilostamide and further amplified in combination with PGE(1) (26 ± 6 vs. 56 ± 12 % above basal). PGE(1) reduced the time to reach 90 % of both the maximal 5-HT- and isoproterenol-evoked inotropic response compared to 5-HT or isoproterenol alone. PGE(1) did not modify PDE activity in the homogenate, either alone or when given simultaneously with PDE3 and/or PDE4 inhibitors. Neither 5-HT- nor isoproterenol-stimulated AC activity was significantly amplified by PGE(1). Sensitivity of ventricular strips to Ca(2+) was not enhanced in the presence of PGE(1). Our results show that PGE(1) can enhance cAMP-mediated responses in failing human left ventricle, through a mechanism independent of PDE inhibition, amplification of AC activity or increasing sensitivity to calcium. This effect of PGE(1) possibly contributes to the increase of cardiac output, independent of decreased afterload, observed after prostaglandin administration in humans.
Asunto(s)
Alprostadil/farmacología , Insuficiencia Cardíaca/fisiopatología , Contracción Miocárdica/efectos de los fármacos , Receptores Adrenérgicos beta/fisiología , Receptores de Serotonina 5-HT4/fisiología , Adenilil Ciclasas/metabolismo , Adolescente , Adulto , Anciano , Calcio/metabolismo , Niño , AMP Cíclico/fisiología , Femenino , Humanos , Técnicas In Vitro , Masculino , Persona de Mediana Edad , Inhibidores de Fosfodiesterasa/farmacologíaRESUMEN
Serotonin (5-hydroxytryptamine, 5-HT) is an important signalling molecule in the human body. The 5-HT(4) serotonin receptor, coupled to the G protein G(s), plays important physiological and pathophysiological roles in the heart, urinary bladder, gastrointestinal tract and the adrenal gland. Both 5-HT(4) antagonists and agonists have been developed in the aim to treat diseases in these organs. 5-HT(4) agonists might have beneficial effects in the central nervous system (CNS) and therefore, 5-HT(4) antagonists might cause CNS side effects. In this study, we have developed new amphoteric 5-HT(4) antagonists. A series of cyclic indole amide derivatives possessing an oxazine ring and a piperidine alkane carboxylic acid side chain and the corresponding prodrug esters were synthesized and their binding to 5-HT(4) receptors and antagonist properties were evaluated. In addition, an indole ester without the oxazine ring and the corresponding indole amide derivatives were also tested. Octanol-water distribution (LogD(Oct7.4)) was tested for some of the synthesized ligands. The main structure-affinity characteristics of the 5-HT(4) compounds tested were that the prodrug esters show higher affinity than their corresponding free acids, indole esters show higher affinity than the corresponding amides and ligands containing the oxazine ring in the indole skeleton show higher affinity than indole derivatives not containing the ring. One representative prodrug ester and its corresponding free acid were tested for binding on a panel of receptors and showed preserved selectivity for the 5-HT(4) receptor. These new molecules may be useful to target peripheral 5-HT(4) receptors.
Asunto(s)
Receptores de Serotonina 5-HT4/metabolismo , Antagonistas del Receptor de Serotonina 5-HT4/síntesis química , Amidas , Ésteres , Humanos , Indoles , Ligandos , Oxazinas , Piperidinas , Profármacos/síntesis química , Antagonistas del Receptor de Serotonina 5-HT4/química , Antagonistas del Receptor de Serotonina 5-HT4/farmacología , Relación Estructura-ActividadRESUMEN
AIMS: Chronic obstructive pulmonary disease with alveolar hypoxia is associated with diastolic dysfunction in the right and left ventricle (LV). LV diastolic dysfunction is not caused by increased afterload, and we recently showed that reduced phosphorylation of phospholamban at serine (Ser) 16 may explain the reduced relaxation of the myocardium. Here, we study the mechanisms leading to the hypoxia-induced reduction in phosphorylation of phospholamban at Ser16. METHODS AND RESULTS: In C57Bl/6j mice exposed to 10% oxygen, signalling molecules were measured in cardiac tissue, sarcoplasmic reticulum (SR)-enriched membrane preparations, and serum. Cardiomyocytes isolated from neonatal mice were exposed to interleukin (IL)-18 for 24 h. The beta-adrenergic pathway in the myocardium was not altered by alveolar hypoxia, as assessed by measurements of beta-adrenergic receptor levels, adenylyl cyclase activity, and subunits of cyclic AMP-dependent protein kinase. However, alveolar hypoxia led to a significantly higher amount (124%) and activity (234%) of protein phosphatase (PP) 2A in SR-enriched membrane preparations from LV compared with control. Serum levels of an array of cytokines were assayed, and a pronounced increase in IL-18 was observed. In isolated cardiomyocytes, treatment with IL-18 increased the amount and activity of PP2A, and reduced phosphorylation of phospholamban at Ser16 to 54% of control. CONCLUSION: Our results indicate that the diastolic dysfunction observed in alveolar hypoxia might be caused by increased circulating IL-18, thereby inducing an increase in PP2A and a reduction in phosphorylation of phospholamban at Ser16.
Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Insuficiencia Cardíaca Diastólica/metabolismo , Hipoxia/metabolismo , Interleucina-18/sangre , Proteína Fosfatasa 2/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Adenilil Ciclasas/metabolismo , Animales , Peso Corporal , Calcio/metabolismo , Colágeno/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Citocinas/metabolismo , Insuficiencia Cardíaca Diastólica/etiología , Hipoxia/etiología , Hipoxia/patología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Tamaño de los Órganos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Receptores Adrenérgicos beta/metabolismoRESUMEN
Previously, cardioexcitation by serotonin (5-hydroxytryptamine, 5-HT) was believed to be confined to atria in mammals including man, and mediated through 5-HT(4) receptors in pig and man, but 5-HT(2A) receptors in rat. Recent studies, reviewed here, demonstrate that functional 5-HT(4) receptors can be revealed in porcine and human ventricular myocardium during phosphodiesterase inhibition, and that 5-HT(4) receptor mRNA is increased in human heart failure. In rats, functional 5-HT(4) and 5-HT(2A) receptors appear in the cardiac ventricle during heart failure and mediate inotropic responses through different mechanisms. 5-HT(2A) receptor signalling resembles that from alpha(1)-adrenoceptors and causes inotropic effects through increased myosin light chain phosphorylation, resulting in Ca(2+) sensitisation. 5-HT(4) receptor signalling resembles that from beta-adrenoceptors and causes inotropic effects through a pathway involving cAMP and PKA-mediated phosphorylation of proteins involved in Ca(2+) handling, resulting in enhanced contractility through increased Ca(2+) availability. Cyclic AMP generated through 5-HT(4) receptor stimulation seems more efficiently coupled to increased contractility than cAMP generated through beta-adrenoceptor stimulation. Increasing contractility through cAMP is considered less energy efficient than Ca(2+) sensitisation and this may be one reason why beta-adrenoceptor antagonism is beneficial in heart failure patients. Treatment of heart failure rats with the 5-HT(4) antagonist SB207266 (piboserod) resulted in potentially beneficial effects, although small. Further studies are needed to clarify if such treatment will be useful for patients with heart failure.
Asunto(s)
Ventrículos Cardíacos/metabolismo , Serotonina/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Humanos , Modelos Biológicos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiopatología , Receptores de Serotonina/metabolismo , Serotonina/farmacología , Serotoninérgicos/farmacología , Transducción de Señal/fisiología , PorcinosRESUMEN
Cardiac responsiveness to neurohumoral stimulation is altered in congestive heart failure (CHF). In chronic CHF, the left ventricle has become sensitive to serotonin because of appearance of Gs-coupled 5-HT4 receptors. Whether this also occurs in acute CHF is unknown. Serotonin responsiveness may develop gradually or represent an early response to the insult. Furthermore, serotonin receptor expression could vary with progression of the disease. Postinfarction CHF was induced in male Wistar rats by coronary artery ligation with nonligated sham-operated rats as control. Contractility was measured in left ventricular papillary muscles and mRNA quantified by real-time reverse-transcription PCR. Myosin light chain-2 phosphorylation was determined by charged gel electrophoresis and Western blotting. Ca2+ transients in CHF were measured in field stimulated fluo-4-loaded cardiomyocytes. A novel 5-HT2A receptor-mediated inotropic response was detected in acute failing ventricle, accompanied by increased 5-HT2A mRNA levels. Functionally, this receptor dominated over 5-HT4 receptors that were also induced. The 5-HT2A receptor-mediated inotropic response displayed a triphasic pattern, shaped by temporally different activation of Ca2+-calmodulin-dependent myosin light chain kinase, Rho-associated kinase and inhibitory protein kinase C, and was accompanied by increased myosin light chain-2 phosphorylation. Ca2+ transients were slightly decreased by 5-HT2A stimulation. The acute failing rat ventricle is, thus, dually regulated by serotonin through Gq-coupled 5-HT2A receptors and Gs-coupled 5-HT4 receptors.
Asunto(s)
Insuficiencia Cardíaca/fisiopatología , Contracción Miocárdica , Receptor de Serotonina 5-HT2A/fisiología , Receptores de Serotonina 5-HT4/fisiología , Enfermedad Aguda , Animales , Calcio/metabolismo , Calmodulina/antagonistas & inhibidores , Calmodulina/fisiología , Miosinas Cardíacas/metabolismo , Relación Dosis-Respuesta a Droga , Péptidos y Proteínas de Señalización Intracelular , Sistema de Señalización de MAP Quinasas , Masculino , Miocitos Cardíacos/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , Quinasa de Cadena Ligera de Miosina/fisiología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/fisiología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/fisiología , ARN Mensajero/análisis , Ratas , Ratas Wistar , Receptor de Serotonina 5-HT2A/genética , Receptores de Serotonina 5-HT4/genética , Serotonina/farmacología , Quinasas Asociadas a rhoRESUMEN
Previously, we demonstrated that human serotonin (5-HT) 5-HT(7) receptors display marked constitutive activity. Here, we tested if the constitutive activation of adenylyl cyclase by 5-HT(7) receptors influenced both the desensitization properties of transfected 5-HT(7) receptors and the ability of endogenous G(s)-coupled receptors to activate adenylyl cyclase. Using membranes from stably transfected HEK293 cells expressing the recombinant human 5-HT(7) receptor splice variants (5-HT(7(a)), 5-HT(7(b)) and 5-HT(7(d))), we compared the effects of 1-h or 24-h preincubation of the agonist 5-HT, partial inverse agonists mesulergine and SB269970, and full inverse agonists clozapine and methiothepin on subsequent activation of adenylyl cyclase by both 5-HT through transfected 5-HT(7) receptors and the endogenous G(s)-coupled beta-adrenoceptors and prostaglandin receptors of HEK293 cells. The data show that stable expression of 5-HT(7) receptors is sufficient to attenuate adenylyl cyclase activation by endogenous G(s)-coupled receptors. Interestingly, preincubation with inverse agonists not only failed to result in the predicted resensitization of all receptor mediated adenylyl cyclase activation, but some inverse agonists further attenuated (desensitized) beta-adrenoceptor and prostaglandin-stimulated adenylyl cyclase activation similar to long-term agonist exposure by 5-HT. These effects were not correlated with inverse agonist efficacy, were not accompanied by receptor down-regulation and appear to be mediated by a protein kinase A (PKA) independent mechanism. It is concluded that the human 5-HT(7) receptor mediates heterologous desensitization of endogenous G(s)-coupled receptors through an unknown and potentially novel mechanism.
Asunto(s)
Receptores de Serotonina/fisiología , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología , Adenilil Ciclasas/metabolismo , Empalme Alternativo/genética , Unión Competitiva/efectos de los fármacos , Línea Celular , Membrana Celular/metabolismo , Clozapina/farmacología , Colforsina/farmacología , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Activación Enzimática/efectos de los fármacos , Ergolinas/farmacología , Expresión Génica , Humanos , Isoproterenol/farmacología , Isoquinolinas/farmacología , Metiotepina/farmacología , Análisis Multivariante , Fenoles/farmacología , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Ensayo de Unión Radioligante , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Serotonina/análogos & derivados , Serotonina/metabolismo , Serotonina/farmacología , Sulfonamidas/farmacología , Factores de Tiempo , TritioRESUMEN
BACKGROUND: Current pharmacological treatment of congestive heart failure (CHF) addresses changes in neurohumoral stimulation or cardiac responsiveness to such stimulation. Yet, undiscovered neurohumoral changes, adaptive or maladaptive, may occur in CHF and suggest novel pharmacological treatment. Serotonin [5-hydroxytryptamine (5-HT)] enhances contractility and causes arrhythmias through 5-HT(4) receptors in human atrium and ventricle but not through rat ventricular 5-HT(4) receptors. OBJECTIVE: We investigated whether CHF could induce ventricular responsiveness to serotonin. METHODS: Postinfarction CHF was induced in male Wistar rats by coronary artery ligation. Contractility was measured in left ventricular papillary muscles 6 weeks after infarction. Messenger RNA was quantified by RT-PCR and cAMP by RIA. RESULTS: Serotonin caused positive inotropic (-logEC(50)=7.5) and lusitropic effects in CHF but not Sham papillary muscles. The inotropic effect of 10 muM serotonin in CHF (31.3+/-2.2%) was of similar size as the effect of 10 muM isoproterenol (34.0+/-1.7%). The effects of serotonin were antagonised by GR113808 (0.5-5 nM), consistent with mediation through 5-HT(4) receptors. This was further supported by positive inotropic effects of the 5-HT(4)-selective partial agonist RS67506. Carbachol blunted the serotonin responses and serotonin increased ventricular and cardiomyocyte cAMP, consistent with coupling to G(s) and adenylyl cyclase. Quantitative RT-PCR revealed fourfold increased 5-HT(4(b)) mRNA expression in CHF vs. Sham ventricles. CONCLUSION: Functional ventricular 5-HT(4) receptors are induced by myocardial infarction and CHF of the rat heart. We propose that they are a model for ventricular 5-HT(4) receptors of human failing heart and may play a pathophysiological role in heart failure.
Asunto(s)
Cardiotónicos/farmacología , Insuficiencia Cardíaca/fisiopatología , Contracción Miocárdica/efectos de los fármacos , Receptores de Serotonina 5-HT4/fisiología , Serotonina/farmacología , Animales , AMP Cíclico/metabolismo , Insuficiencia Cardíaca/etiología , Indoles/farmacología , Masculino , Infarto del Miocardio/complicaciones , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/metabolismo , Músculos Papilares/efectos de los fármacos , Músculos Papilares/fisiopatología , ARN Mensajero/genética , Ratas , Ratas Wistar , Receptores de Serotonina 5-HT4/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología , Sulfonamidas/farmacologíaRESUMEN
Prucalopride is a gastrointestinal prokinetic drug that acts through 5-HT4 receptors, but its potential effects on cardiac atrial function are unknown. We investigated the effects of prucalopride on human right atrium, piglet left atrium, and piglet sinoatrial node. The effects of prucalopride on 5-HT4 receptor splice variants a, b, g and i, known to be expressed in human atrium, were studied for comparison. Prucalopride was an inotropic partial agonist, compared with 5-HT, on paced human atrial trabeculae (-logEC50M=7.4) and porcine left atria (-logEC50M=7.2), with intrinsic activity of 0.77 and 0.63 respectively. Prucalopride (1 microM) surmountably antagonized the positive inotropic effects of 5-HT on human (pK(P)=7.2) and porcine (pK(P)=7.1) atrium. Prucalopride was also a chronotropic partial agonist (-logEC50M=7.4, intrinsic activity=0.72 with respect to 5-HT) on spontaneously beating piglet atria. The cardiostimulant effects of prucalopride were prevented by GR113808 (1 microM), consistent with mediation through 5-HT4 receptors. Prucalopride bound to recombinant 5-HT4(a), 5-HT4(b), 5-HT4(g), and 5-HT4(i) receptors, labeled by [3H]GR113808, with pKi values of 7.6, 7.5, 7.4, and 7.8 respectively. Prucalopride stimulated adenylyl cyclase as a partial agonist on 5-HT4(a), 5-HT4(b), and 5-HT4(i) receptors with intrinsic activities of 0.82, 0.86, and 0.78 and -logEC50 values of 7.2, 7.3, and 7.2 respectively. At the 5-HT4(g) receptor prucalopride acted as a full agonist (-logEC50M=8.0) compared with 5-HT in the cell line tested, which was probably due to high receptor expression levels. We conclude that prucalopride is a cardiostimulatory partial agonist through human and porcine 5-HT4 receptors. Since prucalopride acts similarly through 5-HT4(a), 5-HT4(b), 5-HT4(g), and 5-HT4(i) receptors, any of these variants could be involved in the mediation of cardiostimulation.
Asunto(s)
Benzofuranos/farmacología , Atrios Cardíacos/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Proteínas Recombinantes/metabolismo , Adenilil Ciclasas/metabolismo , Anciano , Animales , Línea Celular , Femenino , Atrios Cardíacos/metabolismo , Humanos , Indoles/farmacología , Masculino , Persona de Mediana Edad , Isoformas de Proteínas/agonistas , Proteínas Recombinantes/agonistas , Serotonina/farmacología , Agonistas del Receptor de Serotonina 5-HT4 , Antagonistas de la Serotonina/farmacología , Sulfonamidas/farmacología , PorcinosRESUMEN
1. Using membranes from stably or transiently transfected HEK293 cells cultured in 5-HT-free medium and expressing the recombinant human 5-HT(7) receptor splice variants (h5-HT(7(a)), h5-HT(7(b)) and h5-HT(7(d))), we compared their abilities to constitutively activate adenylyl cyclase (AC). 2. All h5-HT(7) splice variants elevated basal and forskolin-stimulated AC. The basal AC activity was reduced by the 5-HT(7) antagonist methiothepin and this effect was blocked by mesulergine (neutral 5-HT(7) antagonist) indicating that the inhibitory effect of methiothepin is inverse agonism at the 5-HT(7) receptor. 3. Receptor density correlated poorly with constitutive AC activity in stable clonal cell lines and transiently transfected cells. Mean constitutive AC activity as a percentage of forskolin-stimulated AC was significantly higher for the h5-HT(7(b)) splice variant compared to the h5-HT(7(a)) and h5-HT(7(d)) splice variants but only in stable cell lines. 4. All eight 5-HT antagonists tested inhibited constitutive AC activity of all splice variants in a concentration-dependent manner. No differences in inverse agonist potencies (pIC(50)) were observed between the splice variants. The rank order of potencies was in agreement and highly correlated with antagonist potencies (pK(b)) determined by antagonism of 5-HT-stimulated AC activity (methiothepin >metergoline> mesulergine > or = clozapine > or = spiperone > or = ritanserin > methysergide > ketanserin). 5. The efficacy of inverse agonism was not receptor level dependent and varied for several 5-HT antagonists between membrane preparations of transiently and stably transfected cells. 6. It is concluded that the h5-HT(7) splice variants display similar constitutive activity and inverse agonist properties.
Asunto(s)
Empalme Alternativo , Receptores de Serotonina/biosíntesis , Receptores de Serotonina/genética , Agonistas de Receptores de Serotonina/farmacología , Inhibidores de Adenilato Ciclasa , Adenilil Ciclasas/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Variación Genética/efectos de los fármacos , Variación Genética/fisiología , Humanos , Antagonistas de la Serotonina/farmacología , TransfecciónRESUMEN
5-HT4 receptor pre-mRNA is alternatively spliced in human (h) tissue to produce several splice variants, called 5-HT4(a) to 5-HT4(h) and 5-HT4(n). Polymerase chain reaction (PCR) with primers designed to amplify both 5-HT4(a) and 5-HT4(b) amplified three additional bands in different tissues, two representing different mRNA species both encoding 5-HT4(g) and one representing mRNA for a novel splice variant named 5-HT4(i), cloned from testis and pancreas respectively. Primary and nested PCR detected both 5-HT4(g) and 5-HT4(i) in multiple tissues. Whereas 5-HT4(i), was found in all cardiovascular tissues analysed, 5-HT4(g) was mainly present in atria. However, quantitative RT-PCR indicated 5-HT4(g) expression also in cardiac ventricle. The pharmacological profiles and ability to activate adenylyl cyclase (AC) were compared between four recombinant h5-HT4 splice variants (a, b, g and i) expressed transiently and stably in HEK293 cells. Displacement of [(3)H]GR113808 with ten ligands revealed identical pharmacological profiles (affinity rank order: GR125487, SB207710, GR113808>SB203186>serotonin, cisapride, tropisetron>renzapride, 5-MeOT>5-CT). In transiently transfected HEK293 cells cisapride was a partial agonist compared to serotonin at 5-HT4(b), 5-HT4(g) and 5-HT4(i) receptors. In membranes from HEK293 cells stably expressing 5-HT4(g) (3,000 fmol/mg protein) or 5-HT4(i) (500 fmol/mg protein), serotonin and 5-MeOT were full agonists while cisapride was full agonist at 5-HT4(g) and partial agonist at 5-HT4(i), probably due to different receptor expression levels. At both 5-HT4(g) and 5-HT4(i), the behaviour of 5-HT4 receptor antagonists was dependent on receptor level. At high receptor levels, tropisetron and SB207710 and to a variable extent SB203186 and GR113808 displayed some partial agonist activity, whereas GR125487 and SB207266 reduced the AC activity below basal, indicating both receptors to be constitutively active. We conclude that the novel 5-HT4(i) receptor splice variant is pharmacologically indistinguishable from other 5-HT4 splice variants and that the 5-HT4(i) C-terminal tail does not influence coupling to AC.
Asunto(s)
Empalme Alternativo , Miocardio/metabolismo , Receptores de Serotonina 5-HT4/genética , Adenilil Ciclasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Unión Competitiva , Células Cultivadas , Clonación Molecular , ADN Complementario/biosíntesis , ADN Complementario/genética , Activación Enzimática/efectos de los fármacos , Humanos , Ligandos , Datos de Secuencia Molecular , Miocardio/química , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , ARN Mensajero/análisis , Receptores de Serotonina 5-HT4/biosíntesis , Receptores de Serotonina 5-HT4/metabolismo , Antagonistas de la Serotonina/metabolismo , Agonistas de Receptores de Serotonina/metabolismo , TransfecciónRESUMEN
BACKGROUND AND PURPOSE: PDE3 and/or PDE4 control ventricular effects of catecholamines in several species but their relative effects in failing human ventricle are unknown. We investigated whether the PDE3-selective inhibitor cilostamide (0.3-1 µM) or PDE4 inhibitor rolipram (1-10 µM) modified the positive inotropic and lusitropic effects of catecholamines in human failing myocardium. EXPERIMENTAL APPROACH: Right and left ventricular trabeculae from freshly explanted hearts of 5 non-ß-blocker-treated and 15 metoprolol-treated patients with terminal heart failure were paced to contract at 1 Hz. The effects of (-)-noradrenaline, mediated through ß1 adrenoceptors (ß2 adrenoceptors blocked with ICI118551), and (-)-adrenaline, mediated through ß2 adrenoceptors (ß1 adrenoceptors blocked with CGP20712A), were assessed in the absence and presence of PDE inhibitors. Catecholamine potencies were estimated from -logEC50s. KEY RESULTS: Cilostamide did not significantly potentiate the inotropic effects of the catecholamines in non-ß-blocker-treated patients. Cilostamide caused greater potentiation (P = 0.037) of the positive inotropic effects of (-)-adrenaline (0.78 ± 0.12 log units) than (-)-noradrenaline (0.47 ± 0.12 log units) in metoprolol-treated patients. Lusitropic effects of the catecholamines were also potentiated by cilostamide. Rolipram did not affect the inotropic and lusitropic potencies of (-)-noradrenaline or (-)-adrenaline on right and left ventricular trabeculae from metoprolol-treated patients. CONCLUSIONS AND IMPLICATIONS: Metoprolol induces a control by PDE3 of ventricular effects mediated through both ß1 and ß2 adrenoceptors, thereby further reducing sympathetic cardiostimulation in patients with terminal heart failure. Concurrent therapy with a PDE3 blocker and metoprolol could conceivably facilitate cardiostimulation evoked by adrenaline through ß2 adrenoceptors. PDE4 does not appear to reduce inotropic and lusitropic effects of catecholamines in failing human ventricle.
Asunto(s)
Antagonistas de Receptores Adrenérgicos beta 1/efectos adversos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Ventrículos Cardíacos/efectos de los fármacos , Metoprolol/efectos adversos , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Agonistas alfa-Adrenérgicos/química , Agonistas alfa-Adrenérgicos/farmacología , Antagonistas de Receptores Adrenérgicos beta 1/farmacología , Antagonistas de Receptores Adrenérgicos beta 1/uso terapéutico , Antagonistas de Receptores Adrenérgicos beta 2/farmacología , Agonistas Adrenérgicos beta/química , Agonistas Adrenérgicos beta/farmacología , Antiarrítmicos/efectos adversos , Antiarrítmicos/uso terapéutico , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/química , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Epinefrina/agonistas , Epinefrina/farmacología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/cirugía , Trasplante de Corazón , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Humanos , Técnicas In Vitro , Metoprolol/uso terapéutico , Persona de Mediana Edad , Contracción Miocárdica/efectos de los fármacos , Norepinefrina/agonistas , Norepinefrina/farmacología , Inhibidores de Fosfodiesterasa 3/farmacología , Inhibidores de Fosfodiesterasa 4/farmacología , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 2/químicaRESUMEN
Prostanoid-modulatory approaches in heart failure patients have displayed effects which may seem to be mutually incompatible. Both treatment with prostanoids and inhibition of prostanoid synthesis have resulted in increased mortality in heart failure patients. Currently, it is unknown if prostanoids mediate contractile effects in failing human heart and if this can explain some of the clinical effects seen after prostanoid modulatory treatments. Therefore, the objectives of this study were to determine if prostanoids could elicit direct inotropic responses in human ventricle, and if so to determine if they are modified in failing ventricle. Contractile force was measured in left ventricular strips from non-failing or failing human and rat hearts. The ratio of phosphorylated to non-phosphorylated myosin light chain 2 (MLC-2) was measured by Western blotting in myocardial strips, and the levels of prostanoid FP receptor mRNA and protein were measured in rat by real-time RT-PCR and receptor binding assays. In non-failing human hearts, prostanoids evoked a positive inotropic effect and an increase of MLC-2 phosphorylation which was absent in failing human hearts. In failing rat heart, the prostanoid FP receptor-mediated inotropic response and prostanoid FP receptor-density was reduced by ~40-50% compared to non-failing rat heart. Prostanoids mediate a sustained positive inotropic response in non-failing heart, which appears to be down regulated in failing heart. The pathophysiological significance of changes in prostanoid-mediated inotropic support in the failing heart remains to be determined.
Asunto(s)
Alprostadil/farmacología , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/fisiopatología , Iloprost/farmacología , Prostaglandinas F Sintéticas/farmacología , Receptores de Prostaglandina/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Miosinas Cardíacas/fisiología , Niño , Modelos Animales de Enfermedad , Femenino , Ventrículos Cardíacos/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Contracción Miocárdica/fisiología , Cadenas Ligeras de Miosina/fisiología , Ratas , Función Ventricular/efectos de los fármacosRESUMEN
AIMS: The aims of this study were to determine if the prostanoid F receptor (FPR)-mediated inotropic effect in rat ventricle is mediated by increased phosphorylation of myosin light chain-2 (MLC-2) and to elucidate the signalling pathway(s) activated by FPRs to regulate MLC-2 phosphorylation. METHODS AND RESULTS: Contractility was measured in left ventricular strips from adult male rats. Strips were also snap-frozen, and changes in the phosphorylation level of both MLC-2 and myosin phosphatase targeting subunit-2 (MYPT-2) were quantified. FPR stimulation with fluprostenol increased contractility by approximately 100% above basal and increased phosphorylation of both MLC-2 (by approximately 30%) and MYPT-2 (by approximately 50%). The FPR-mediated inotropic effect and MLC-2 phosphorylation were reduced by a similar magnitude in the presence of the myosin light chain kinase (MLCK) inhibitor ML-7 (approximately 60-70%) and an inhibitor of Ca(2+)/calmodulin, W-7 (approximately 35%). Inhibition of Rho-associated kinase by Y-27632 reduced the FPR-mediated inotropic effect and MLC-2 phosphorylation by approximately 40-45% and MYPT-2 phosphorylation by approximately 70%. ML-7 and Y-27632 together reduced contractility and MLC-2 phosphorylation by approximately 70-80%. The FPR-mediated inotropic effect was only modestly affected by high concentrations of the inositol tris-phosphate (IP(3)) receptor blocker 2-APB, but not by the protein kinase C (PKC) inhibitor bisindolylmaleimide. CONCLUSION: The FPR-evoked inotropic effect is mediated by increasing the phosphorylation of MLC-2 through regulation of both MLCK and myosin light chain phosphatase activities. The second messenger IP(3) and PKC are unlikely to be involved in the signalling cascade of the FPR-mediated positive inotropic effect. Therefore, FPR signalling mechanism(s) regulating MLC-2 phosphorylation likely extend beyond those classically established for G(q/11)-coupled receptors.
Asunto(s)
Miosinas Cardíacas/metabolismo , Ventrículos Cardíacos/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Receptores de Prostaglandina/metabolismo , Animales , Calmodulina/antagonistas & inhibidores , Calmodulina/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Contracción Miocárdica/fisiología , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera/antagonistas & inhibidores , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/fisiología , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismoRESUMEN
Cardiac ventricular responsiveness to serotonin appears in rat postinfarction congestive heart failure (CHF), mainly mediated by 5-HT(4) receptors in chronic dilated CHF and 5-HT(2A) receptors in acute CHF. To differentiate between the effects of left ventricular (LV) hypertrophy and failure on 5-HT(2A)- and 5-HT(4)-mediated inotropic serotonin response, male Wistar rats with increasing LV hypertrophy (AB1-3) and failure (ABHF) 6 weeks after banding of the ascending aorta were screened for contractile function in vivo (echocardiography) and ex vivo in LV papillary muscles, and mRNA expression level determined by RT-PCR. Both AB1-3 and ABHF displayed LV hypertrophy and remodelling. In ABHF, systolic LV and left atrial diameter increased and cardiac output decreased compared to AB3. Serotonin induced a positive inotropic response (PIR) in papillary muscles correlated with the degree of hypertrophy reaching a maximum in ABHF. Both 5-HT(2A) and 5-HT(4) receptors contributed to the PIR. The 5-HT(2A) contribution increased with increasing hypertrophy, and the 5-HT(4) contribution increased upon transition to heart failure. No 5-HT(2B)-mediated PIR was observed, consistent with increased 5-HT(2B) mRNA only in non-cardiomyocytes. The 5-HT(2A), 5-HT(2B) and 5-HT(4) mRNA levels increased in AB1-3 and increased further in ABHF compared to AB3, but did not correlate with degree of hypertrophy. 5-HT(2A) mRNA was also increased in LV of terminally failing human hearts. In conclusion, functional 5-HT(2A) and 5-HT(4) receptors are differentially induced in LV hypertrophy and failure. While the 5-HT(2A)-mediated PIR is linearly correlated with the degree of hypertrophy, the 5-HT(4)-mediated PIR seems to increase with LV dilatation, as also seen in postinfarction CHF.
Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Insuficiencia Cardíaca/genética , Ventrículos Cardíacos/metabolismo , Hipertrofia Ventricular Izquierda/genética , Receptor de Serotonina 5-HT2A/genética , Receptores de Serotonina 5-HT4/genética , Serotonina/farmacología , Animales , Ecocardiografía , Ventrículos Cardíacos/patología , Humanos , Isoproterenol/farmacología , Masculino , Relajación Muscular/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2B/genética , Receptor de Serotonina 5-HT2B/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Donantes de TejidosRESUMEN
Human 5-hydroxytryptamine(7) (5-HT(7)) receptors display characteristics shared with receptors believed to form a tight physical coupling with G protein in the absence of ligand. Some receptors apparently preassociated with G(i/o) and G(q/11) are reported to inhibit the signaling of other similarly coupled G protein-coupled receptors by limiting their access to activate a common G protein pool. Therefore, we determined whether 5-HT(7) receptor expression was sufficient to limit signaling of endogenously expressed G(s)-coupled receptors in human embryonic kidney (HEK) 293 cells. Using the ecdysone-inducible expression system, which allows for the titration of increasing receptor density in the same clonal cell line, we compared the effects of 5-HT(4(b)) and 5-HT(7(a,b,d)) receptor expression on adenylyl cyclase (AC) stimulation by the endogenous G(s)-coupled beta-adrenergic (betaAR) and prostanoid EP (EPR) receptors. betaAR- and EPR-stimulated AC activity was attenuated by 5-HT(7) receptor expression in both membrane preparations and intact HEK293 cells. betaAR- and EPR-stimulated AC activity was unaffected by expression of the G(s)-coupled 5-HT(4) receptor. The mechanism of this heterologous desensitization seems independent of protein kinase A activation, nor does it occur at the level of G protein activation because 1) betaAR- and EPR-stimulated AC activity was not restored to control values when Galpha(s) was overexpressed; and 2) beta(1)AR and beta(2)AR activation of Galpha(s) was unaffected by the expression of 5-HT(7) receptors. In addition, overexpression of AC isoforms was unable to rescue betaAR- and EPR-stimulated AC activity. Therefore, 5-HT(7) receptors probably limit access and/or impede activation of AC by betaAR and EP receptors. Although the 5-HT(7) receptor may preassociate with G protein and/or AC, the mechanism of this heterologous desensitization remains elusive.
Asunto(s)
Adenilil Ciclasas/metabolismo , Riñón/enzimología , Receptores Acoplados a Proteínas G/fisiología , Receptores de Serotonina/metabolismo , Línea Celular , Activación Enzimática/fisiología , Humanos , Riñón/embriología , Riñón/metabolismo , Receptores Adrenérgicos beta/fisiología , Receptores de Prostaglandina/fisiologíaRESUMEN
Chronic obstructive pulmonary disease (COPD) may lead to pulmonary hypertension (PH) and reduced function of the right ventricle (RV). However, COPD patients may also develop left ventricular (LV) diastolic dysfunction. We hypothesized that alveolar hypoxia induces LV diastolic dysfunction and changes in proteins governing Ca(2+) removal from cytosol during diastole. Mice exposed to 10% oxygen for 1, 2, or 4 wk were compared with controls. Cardiac hemodynamics were assessed with Doppler echocardiography and a microtransducer catheter under general anesthesia. The pulmonary artery blood flow acceleration time was shorter and RV pressure was higher after 4 wk of hypoxia compared with controls (both P < 0.05). In the RV and LV, 4 wk of hypoxia induced a prolongation of the time constant of isovolumic pressure decay (51% RV, 43% LV) and a reduction in the maximum rate of decline in pressure compared with control (42% RV, 42% LV, all P < 0.05), indicating impaired relaxation and diastolic dysfunction. Alveolar hypoxia induced a 38%, 47%, and 27% reduction in Ser16-phosphorylated phospholamban (PLB) in the RV after 1, 2, and 4 wk of hypoxia, respectively, and at the same time points, Ser16-phosphorylated PLB in the LV was downregulated by 32%, 34%, and 25% (all P < 0.05). The amounts of PLB and sarco(endo)plasmic reticulum Ca(2+) ATPase (SERCA2a) were not changed. In conclusion, chronic alveolar hypoxia induces hypophosphorylation of PLB at Ser16, which might be a mechanism for impaired relaxation and diastolic dysfunction in both the RV and LV.