Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 14(4): 1360-6, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24002823

RESUMEN

A high-throughput thermal-scanning method to rank-order formulation conditions for therapeutic proteins is described. Apparent transition temperatures for unfolding and aggregation of four different proteins are determined using the dyes SYPRO Orange and thioflavin T (ThT) under a variety of buffer conditions. The results indicate that the ThT-based thermal scanning method offers several advantages over the previously described SYPRO Orange-based thermal scanning and allows rapid rank ordering of solution conditions relevant toward long-term storage of therapeutic molecules. The method is also amenable to high protein concentration and does not require sample dilution or extensive preparation. Additionally, this parallel use of SYPRO Orange and ThT can be readily applied to the screening of mutants for their unfolding and aggregation propensities.


Asunto(s)
Química Farmacéutica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas/química , Algoritmos , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/química , Benzotiazoles , Tampones (Química) , Quimotripsinógeno , Péptidos/administración & dosificación , Péptidos/química , Conformación Proteica , Estructura Secundaria de Proteína , Reacción en Cadena en Tiempo Real de la Polimerasa , Solubilidad , Espectrometría de Fluorescencia , Temperatura , Tiazoles
2.
J Pharm Sci ; 101(10): 3651-60, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22806414

RESUMEN

Visible and subvisible particle formation during the storage of protein solutions is of increasing concern for pharmaceutical products. Previous work (Li Y, Ogunnaike BA, Roberts CJ. 2010. J Pharm Sci 99:645-662) showed that the model protein, alpha-chymotrypsinogen A (aCgn), forms non-native aggregates under accelerated (heated) conditions, but the size and morphology of the resulting aggregates depended sensitively on pH and NaCl. Here, it is shown that aggregates created as high-molecular-weight soluble aggregates undergo a pH- and salt-dependent reversible phase transition to a condensed or insoluble phase of suspended microparticles, whereas monomers remain completely soluble in the same regime. The location of the phase boundary is quantitatively consistent with the different regimes of kinetic behavior observed previously for aCgn. This suggests that the while kinetics is important for controlling the rates of monomer loss during non-native aggregation, it may be possible to tune solution thermodynamics and phase behavior to suppress otherwise soluble aggregates from propagating to form visible or large subvisible particles. Interestingly, the aggregate phase boundary is sensitive to the identity of salt anions in solution, highlighting the importance of electrostatics and preferential salt interactions in mediating aggregate condensation and particle formation.


Asunto(s)
Quimotripsinógeno/química , Cloruro de Sodio/química , Aniones/química , Almacenaje de Medicamentos , Concentración de Iones de Hidrógeno , Cinética , Transición de Fase , Unión Proteica , Soluciones/química , Termodinámica
3.
J Pharm Sci ; 101(5): 1678-87, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22246657

RESUMEN

Monomer unfolding and thermally accelerated aggregation kinetics to produce soluble oligomers or insoluble macroscopic aggregates were characterized as a function of pH for an IgG2 antibody using differential scanning calorimetry (DSC) and size-exclusion chromatography (SEC). Aggregate size was quantified via laser light scattering, and aggregate solubility via turbidity and visual inspection. Interestingly, nonnative oligomers were soluble at pH 5.5 above approximately 15°C, but converted reversibly to visible/insoluble particles at lower temperatures. Lower pH values yielded only soluble aggregates, whereas higher pH resulted in insoluble aggregates, regardless of the solution temperature. Unlike the growing body of literature that supports the three-endotherm model of IgG1 unfolding in DSC, the results here also illustrate limitations of that model for other monoclonal antibodies. Comparison of DSC with monomer loss (via SEC) from samples during thermal scanning indicates that the least conformationally stable domain is not the most aggregation prone, and that a number of the domains remain intact within the constituent monomers of the resulting aggregates. This highlights continued challenges with predicting a priori which domain(s) or thermal transition(s) is(are) most relevant for product stability with respect to aggregation.


Asunto(s)
Anticuerpos/inmunología , Concentración de Iones de Hidrógeno , Inmunoglobulina G/inmunología , Temperatura , Rastreo Diferencial de Calorimetría , Cinética , Solubilidad
4.
J Pharm Sci ; 100(6): 2104-19, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21213307

RESUMEN

Aggregation mechanisms as a function of pH were assessed for the IgG1 antibody described in Part 1 (Brummitt RK, Nesta DP, Chang L, Chase SF, Laue TM, Roberts CJ. Non-native aggregation of an IGG1 antibody in acidic conditions: 1. Unfolding, colloidal interactions, and high molecular weight aggregate formation. J Pharm Sci. In press). Aggregation kinetics along with static light scattering and size-exclusion chromatography indicated that the aggregate nucleus was a dimer for all conditions tested, and this was semiquantitatively consistent with scaling of the characteristic time scale for nucleation (τ(n)) versus protein concentration at pH 4.5 and pH 5.5. Changing pH significantly altered the mechanism of aggregate growth, as well as the size and solubility of aggregates that were formed. Aggregates at pH 3.5 grew primarily by monomer addition and remained small and soluble. Aggregates at pH 4.5 grew first by chain polymerization, followed by condensation polymerization, leading ultimately to large insoluble particles. At pH 5.5, monomer loss resulted primarily in insoluble aggregate formation, with only low levels of soluble aggregate intermediates detected at early times. The influence of pH on aggregate solubility and the reversibility of aggregate phase separation were confirmed via cloud point titrations. Qualitatively, the global aggregation behavior was consistent with reduction of charge-charge repulsions as a primary factor in promoting larger aggregates and aggregate phase separation.


Asunto(s)
Anticuerpos Monoclonales/química , Biofarmacia/métodos , Inmunoglobulina G/química , Multimerización de Proteína , Benzotiazoles , Rastreo Diferencial de Calorimetría , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Electroforesis Capilar , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno , Cinética , Luz , Concentración Osmolar , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Dispersión de Radiación , Solubilidad , Espectrometría de Fluorescencia , Tiazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA