Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Methods ; 20(2): 214-217, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36717692

RESUMEN

Lifeact is a popular peptide-based label of actin filaments in live cells. We have designed an improved Lifeact variant, LILAC, that binds to actin in light using the LOV2 protein. Light control allows the user to modulate actin labeling, enabling image analysis that leverages modulation for an enhanced view of F-actin dynamics in cells. Furthermore, the tool reduces actin perturbations and cell sickness caused by Lifeact overexpression.


Asunto(s)
Actinas , Optogenética , Citoesqueleto de Actina , Péptidos/metabolismo
2.
Biochem J ; 474(22): 3705-3717, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28963347

RESUMEN

Plants, fungi, and bacteria synthesize the aromatic amino acids: l-phenylalanine, l-tyrosine, and l-tryptophan. Chorismate mutase catalyzes the branch point reaction of phenylalanine and tyrosine biosynthesis to generate prephenate. In Arabidopsis thaliana, there are two plastid-localized chorismate mutases that are allosterically regulated (AtCM1 and AtCM3) and one cytosolic isoform (AtCM2) that is unregulated. Previous analysis of plant chorismate mutases suggested that the enzymes from early plants (i.e. bryophytes/moss, lycophytes, and basal angiosperms) formed a clade distinct from the isoforms found in flowering plants; however, no biochemical information on these enzymes is available. To understand the evolution of allosteric regulation in plant chorismate mutases, we analyzed a basal lineage of plant enzymes homologous to AtCM1 based on sequence similarity. The chorismate mutases from the moss/bryophyte Physcomitrella patens (PpCM1 and PpCM2), the lycophyte Selaginella moellendorffii (SmCM), and the basal angiosperm Amborella trichopoda (AmtCM1 and AmtCM2) were characterized biochemically. Tryptophan was a positive effector for each of the five enzymes examined. Histidine was a weak positive effector for PpCM1 and AmtCM1. Neither tyrosine nor phenylalanine altered the activity of SmCM; however, tyrosine was a negative regulator of the other four enzymes. Phenylalanine down-regulates both moss enzymes and AmtCM2. The 2.0 ŠX-ray crystal structure of PpCM1 in complex with the tryptophan identified the allosteric effector site and reveals structural differences between the R- (more active) and T-state (less active) forms of plant chorismate mutases. Molecular insight into the basal plant chorismate mutases guides our understanding of the evolution of allosteric regulation in these enzymes.


Asunto(s)
Bryopsida , Corismato Mutasa/química , Corismato Mutasa/genética , Extractos Vegetales/química , Extractos Vegetales/genética , Selaginellaceae , Regulación Alostérica/fisiología , Secuencia de Aminoácidos , Arabidopsis , Corismato Mutasa/aislamiento & purificación , Cristalografía por Rayos X/métodos , Evolución Molecular , Extractos Vegetales/aislamiento & purificación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
3.
Sci Adv ; 9(8): eabq4632, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36812328

RESUMEN

Comprehensive sampling of natural genetic diversity with metagenomics enables highly resolved insights into the interplay between ecology and evolution. However, resolving adaptive, neutral, or purifying processes of evolution from intrapopulation genomic variation remains a challenge, partly due to the sole reliance on gene sequences to interpret variants. Here, we describe an approach to analyze genetic variation in the context of predicted protein structures and apply it to a marine microbial population within the SAR11 subclade 1a.3.V, which dominates low-latitude surface oceans. Our analyses reveal a tight association between genetic variation and protein structure. In a central gene in nitrogen metabolism, we observe decreased occurrence of nonsynonymous variants from ligand-binding sites as a function of nitrate concentrations, revealing genetic targets of distinct evolutionary pressures maintained by nutrient availability. Our work yields insights into the governing principles of evolution and enables structure-aware investigations of microbial population genetics.


Asunto(s)
Ecología , Genética de Población , Océanos y Mares , Compuestos Orgánicos , Secuencia de Bases , Variación Genética , Evolución Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA