Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell ; 186(11): 2392-2409.e21, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37164012

RESUMEN

T cell responses play an important role in protection against beta-coronavirus infections, including SARS-CoV-2, where they associate with decreased COVID-19 disease severity and duration. To enhance T cell immunity across epitopes infrequently altered in SARS-CoV-2 variants, we designed BNT162b4, an mRNA vaccine component that is intended to be combined with BNT162b2, the spike-protein-encoding vaccine. BNT162b4 encodes variant-conserved, immunogenic segments of the SARS-CoV-2 nucleocapsid, membrane, and ORF1ab proteins, targeting diverse HLA alleles. BNT162b4 elicits polyfunctional CD4+ and CD8+ T cell responses to diverse epitopes in animal models, alone or when co-administered with BNT162b2 while preserving spike-specific immunity. Importantly, we demonstrate that BNT162b4 protects hamsters from severe disease and reduces viral titers following challenge with viral variants. These data suggest that a combination of BNT162b2 and BNT162b4 could reduce COVID-19 disease severity and duration caused by circulating or future variants. BNT162b4 is currently being clinically evaluated in combination with the BA.4/BA.5 Omicron-updated bivalent BNT162b2 (NCT05541861).


Asunto(s)
Vacuna BNT162 , COVID-19 , Animales , Cricetinae , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Epítopos , SARS-CoV-2/genética
2.
Nature ; 592(7853): 283-289, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33524990

RESUMEN

A safe and effective vaccine against COVID-19 is urgently needed in quantities that are sufficient to immunize large populations. Here we report the preclinical development of two vaccine candidates (BNT162b1 and BNT162b2) that contain nucleoside-modified messenger RNA that encodes immunogens derived from the spike glycoprotein (S) of SARS-CoV-2, formulated in lipid nanoparticles. BNT162b1 encodes a soluble, secreted trimerized receptor-binding domain (known as the RBD-foldon). BNT162b2 encodes the full-length transmembrane S glycoprotein, locked in its prefusion conformation by the substitution of two residues with proline (S(K986P/V987P); hereafter, S(P2) (also known as P2 S)). The flexibly tethered RBDs of the RBD-foldon bind to human ACE2 with high avidity. Approximately 20% of the S(P2) trimers are in the two-RBD 'down', one-RBD 'up' state. In mice, one intramuscular dose of either candidate vaccine elicits a dose-dependent antibody response with high virus-entry inhibition titres and strong T-helper-1 CD4+ and IFNγ+CD8+ T cell responses. Prime-boost vaccination of rhesus macaques (Macaca mulatta) with the BNT162b candidates elicits SARS-CoV-2-neutralizing geometric mean titres that are 8.2-18.2× that of a panel of SARS-CoV-2-convalescent human sera. The vaccine candidates protect macaques against challenge with SARS-CoV-2; in particular, BNT162b2 protects the lower respiratory tract against the presence of viral RNA and shows no evidence of disease enhancement. Both candidates are being evaluated in phase I trials in Germany and the USA1-3, and BNT162b2 is being evaluated in an ongoing global phase II/III trial (NCT04380701 and NCT04368728).


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Modelos Animales de Enfermedad , SARS-CoV-2/inmunología , Envejecimiento/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/química , Antígenos Virales/genética , Antígenos Virales/inmunología , Vacuna BNT162 , COVID-19/sangre , COVID-19/terapia , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/genética , Línea Celular , Ensayos Clínicos como Asunto , Femenino , Humanos , Inmunización Pasiva , Internacionalidad , Macaca mulatta/inmunología , Macaca mulatta/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Multimerización de Proteína , ARN Viral/análisis , Sistema Respiratorio/inmunología , Sistema Respiratorio/virología , SARS-CoV-2/química , SARS-CoV-2/genética , Solubilidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología , Vacunación , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/química , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Sueroterapia para COVID-19 , Vacunas de ARNm
3.
Curr Top Microbiol Immunol ; 428: 129-163, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30046985

RESUMEN

Glycosylation is an important post-translational modification that is required for structural and stability purposes and functional roles such as signalling, attachment and shielding. Many human pathogens such as bacteria display an array of carbohydrates on their surface that are non-self to the host; others such as viruses highjack the host-cell machinery and present self-carbohydrates sometimes arranged in a non-self more immunogenic manner. In combination with carrier proteins, these glycan structures can be highly immunogenic. During natural infection, glycan-binding antibodies are often elicited that correlate with long-lasting protection. A great amount of research has been invested in carbohydrate vaccine design to elicit such an immune response, which has led to the development of vaccines against the bacterial pathogens Haemophilus influenzae type b, Streptococcus pneumonia and Neisseria meningitidis. Other vaccines, e.g. against HIV-1, are still in development, but promising progress has been made with the isolation of broadly neutralizing glycan-binding antibodies and the engineering of stable trimeric envelope glycoproteins. Carbohydrate vaccines against other pathogens such as viruses (Dengue, Hepatitis C), parasites (Plasmodium) and fungi (Candida) are at different stages of development. This chapter will discuss the challenges in inducing cross-reactive carbohydrate-targeting antibodies and progress towards carbohydrate vaccines.


Asunto(s)
Polisacáridos/inmunología , Vacunas/química , Vacunas/inmunología , Vacunología , Virulencia/inmunología , Vacunas contra el SIDA/química , Vacunas contra el SIDA/inmunología , Anticuerpos/inmunología , Vacunas Bacterianas/química , Vacunas Bacterianas/inmunología , Glicosilación , Humanos
4.
Proc Natl Acad Sci U S A ; 114(27): 7031-7036, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28630325

RESUMEN

Transmission of hemorrhagic fever New World arenaviruses from their rodent reservoirs to human populations poses substantial public health and economic dangers. These zoonotic events are enabled by the specific interaction between the New World arenaviral attachment glycoprotein, GP1, and cell surface human transferrin receptor (hTfR1). Here, we present the structural basis for how a mouse-derived neutralizing antibody (nAb), OD01, disrupts this interaction by targeting the receptor-binding surface of the GP1 glycoprotein from Junín virus (JUNV), a hemorrhagic fever arenavirus endemic in central Argentina. Comparison of our structure with that of a previously reported nAb complex (JUNV GP1-GD01) reveals largely overlapping epitopes but highly distinct antibody-binding modes. Despite differences in GP1 recognition, we find that both antibodies present a key tyrosine residue, albeit on different chains, that inserts into a central pocket on JUNV GP1 and effectively mimics the contacts made by the host TfR1. These data provide a molecular-level description of how antibodies derived from different germline origins arrive at equivalent immunological solutions to virus neutralization.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Fiebre Hemorrágica Americana/inmunología , Pruebas de Neutralización , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Sitios de Unión , Cristalografía por Rayos X , Ensayo de Inmunoadsorción Enzimática , Epítopos/química , Glicoproteínas/química , Células HEK293 , Humanos , Sistema Inmunológico , Virus Junin , Unión Proteica , Proteínas Recombinantes/inmunología , Proteínas del Envoltorio Viral/química
5.
PLoS Pathog ; 12(5): e1005622, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27152417

RESUMEN

Respiratory syncytial virus (RSV) is the major cause of viral lower respiratory tract illness in children. In contrast to the RSV prototypic strain A2, clinical isolate RSV 2-20 induces airway mucin expression in mice, a clinically relevant phenotype dependent on the fusion (F) protein of the RSV strain. Epidermal growth factor receptor (EGFR) plays a role in airway mucin expression in other systems; therefore, we hypothesized that the RSV 2-20 F protein stimulates EGFR signaling. Infection of cells with chimeric strains RSV A2-2-20F and A2-2-20GF or over-expression of 2-20 F protein resulted in greater phosphorylation of EGFR than infection with RSV A2 or over-expression of A2 F, respectively. Chemical inhibition of EGFR signaling or knockdown of EGFR resulted in diminished infectivity of RSV A2-2-20F but not RSV A2. Over-expression of EGFR enhanced the fusion activity of 2-20 F protein in trans. EGFR co-immunoprecipitated most efficiently with RSV F proteins derived from "mucogenic" strains. RSV 2-20 F and EGFR co-localized in H292 cells, and A2-2-20GF-induced MUC5AC expression was ablated by EGFR inhibitors in these cells. Treatment of BALB/c mice with the EGFR inhibitor erlotinib significantly reduced the amount of RSV A2-2-20F-induced airway mucin expression. Our results demonstrate that RSV F interacts with EGFR in a strain-specific manner, EGFR is a co-factor for infection, and EGFR plays a role in RSV-induced mucin expression, suggesting EGFR is a potential target for RSV disease.


Asunto(s)
Receptores ErbB/metabolismo , Mucinas/biosíntesis , Infecciones por Virus Sincitial Respiratorio/metabolismo , Proteínas Virales de Fusión/metabolismo , Animales , Western Blotting , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Inmunoprecipitación , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena en Tiempo Real de la Polimerasa , Virus Sincitial Respiratorio Humano
6.
J Virol ; 90(24): 11132-11144, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27707925

RESUMEN

The HIV envelope glycoprotein (Env) is extensively modified with host-derived N-linked glycans. The high density of glycosylation on the viral spike limits enzymatic processing, resulting in numerous underprocessed oligomannose-type glycans. This extensive glycosylation not only shields conserved regions of the protein from the immune system but also acts as a target for anti-HIV broadly neutralizing antibodies (bnAbs). In response to the host immune system, the HIV glycan shield is constantly evolving through mutations affecting both the positions and numbers of potential N-linked glycosylation sites (PNGSs). Here, using longitudinal Env sequences from a clade C-infected individual (CAP256), we measured the impact of the shifting glycan shield during HIV infection on the abundance of oligomannose-type glycans. By analyzing the intrinsic mannose patch from a panel of recombinant CAP256 gp120s displaying high protein sequence variability and changes in PNGS number and positioning, we show that the intrinsic mannose patch persists throughout the course of HIV infection and correlates with the number of PNGSs. This effect of the glycan density on the processing state was also supported by the analysis of a cross-clade panel of recombinant gp120 glycoproteins. Together, these observations underscore the importance of glycan clustering for the generation of carbohydrate epitopes for anti-HIV bnAbs. The persistence of the intrinsic mannose patch over the course of HIV infection further highlights this epitope as an important target for HIV vaccine strategies. IMPORTANCE: Development of an HIV vaccine is critical for control of the HIV pandemic, and elicitation of broadly neutralizing antibodies (bnAbs) is likely to be a key component of a successful vaccine response. The HIV envelope glycoprotein (Env) is covered in an array of host-derived N-linked glycans often referred to as the glycan shield. This glycan shield is a target for many of the recently isolated anti-HIV bnAbs and is therefore under constant pressure from the host immune system, leading to changes in both glycan site frequency and location. This study aimed to determine whether these genetic changes impacted the eventual processing of glycans on the HIV Env and the susceptibility of the virus to neutralization. We show that despite this variation in glycan site positioning and frequency over the course of HIV infection, the mannose patch is a conserved feature throughout, making it a stable target for HIV vaccine design.


Asunto(s)
Anticuerpos Neutralizantes/biosíntesis , Regulación Viral de la Expresión Génica , Anticuerpos Anti-VIH/biosíntesis , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Manosa/inmunología , Procesamiento Proteico-Postraduccional , Anticuerpos Neutralizantes/química , Conformación de Carbohidratos , Clonación Molecular , Mapeo Epitopo , Epítopos/química , Epítopos/inmunología , Glicosilación , Células HEK293 , Anticuerpos Anti-VIH/química , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/virología , VIH-1/química , VIH-1/genética , Interacciones Huésped-Patógeno , Humanos , Manosa/química , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
7.
Nat Chem Biol ; 11(9): 713-20, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26214256

RESUMEN

An effective method for direct chemical control over the production of specific proteins would be widely useful. We describe small molecule-assisted shutoff (SMASh), a technique in which proteins are fused to a degron that removes itself in the absence of drug, resulting in the production of an untagged protein. Clinically tested HCV protease inhibitors can then block degron removal, inducing rapid degradation of subsequently synthesized copies of the protein. SMASh allows reversible and dose-dependent shutoff of various proteins in multiple mammalian cell types and in yeast. We also used SMASh to confer drug responsiveness onto an RNA virus for which no licensed inhibitors exist. As SMASh does not require the permanent fusion of a large domain, it should be useful when control over protein production with minimal structural modification is desired. Furthermore, as SMASh involves only a single genetic modification and does not rely on modulating protein-protein interactions, it should be easy to generalize to multiple biological contexts.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Isoquinolinas/farmacología , Proteínas Luminiscentes/metabolismo , Inhibidores de Proteasas/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Sulfonamidas/farmacología , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas Portadoras/genética , Chlorocebus aethiops , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Hepacivirus/química , Hepacivirus/genética , Hepacivirus/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas Luminiscentes/genética , Datos de Secuencia Molecular , Neuronas/efectos de los fármacos , Neuronas/virología , Cultivo Primario de Células , Unión Proteica , Proteolisis , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/genética , Células Vero , Proteínas no Estructurales Virales/genética
8.
Retrovirology ; 13: 8, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26837192

RESUMEN

BACKGROUND: Broadly neutralizing antibodies (bnAbs) directed against the mannose-patch on the HIV envelope glycoprotein gp120 have several features that make them desirable targets for vaccine design. The PGT125-131 bnAb family is of particular interest due to its superior breadth and potency. The overlapping epitopes recognized by this family are intricate and neutralization requires interaction with at least two N-linked glycans (N332/N334, N295 or N301) in addition to backbone-mediated contact with the (323)IGDIR(327) motif of the V3 loop. We have recently shown that this bnAb family consists of two distinct antibody classes that can bind alternate arrangements of glycans in the mannose-patch in the absence of N332 thereby limiting viral escape. This led us to further investigate viral resistance and escape mechanisms to the PGT125-131 bnAb family. RESULTS: Using an escape virus isolated from the PGT125-131 donor as a guide, we show that mutating both the V3 core protein epitope and repositioning critical N-linked glycosylation sites are required to restore neutralization sensitivity. Interestingly, neutralization sensitivity could be restored via different routes for the two distinct bnAb classes within the PGT125-131 family, which may have been important in generating the divergence in recognition. We demonstrate that the observed V3 mutations confer neutralization resistance in other virus strains through both gain-of-function and escape studies. Furthermore, we show that the V3 loop is important in facilitating promiscuous binding to glycans within the mannose-patch. CONCLUSIONS: These data highlight the importance of the V3 loop in the design of immunogens aimed at inducing broad and potent bnAbs that can bind promiscuously to the mannose-patch.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , VIH/inmunología , Evasión Inmune , Epítopos de Linfocito B/inmunología , Humanos , Mutación , Polisacáridos/inmunología
9.
J Virol ; 89(13): 6952-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25878100

RESUMEN

Broadly neutralizing antibodies have been isolated that bind the glycan shield of the HIV-1 envelope spike. One such antibody, PGT135, contacts the intrinsic mannose patch of gp120 at the Asn332, Asn392, and Asn386 glycosylation sites. Here, site-specific glycosylation analysis of recombinant gp120 revealed glycan microheterogeneity sufficient to explain the existence of a minor population of virions resistant to PGT135 neutralization. Target microheterogeneity and antibody glycan specificity are therefore important parameters in HIV-1 vaccine design.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/química , VIH-1/inmunología , Polisacáridos/análisis , Evasión Inmune
10.
J Virol ; 89(2): 1105-18, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25378488

RESUMEN

UNLABELLED: The high-mannose patch of human immunodeficiency virus (HIV) envelope (Env) elicits broadly neutralizing antibodies (bnAbs) during natural infection relatively frequently, and consequently, this region has become a major target of vaccine design. However, it has also become clear that antibody recognition of the region is complex due, at least in part, to variability in neighboring loops and glycans critical to the epitopes. bnAbs against this region have some shared features and some distinguishing features that are crucial to understand in order to design optimal immunogens that can induce different classes of bnAbs against this region. Here, we compare two branches of a single antibody lineage, in which all members recognize the high-mannose patch. One branch (prototype bnAb PGT128) has a 6-amino-acid insertion in CDRH2 that is crucial for broad neutralization. Antibodies in this branch appear to favor a glycan site at N332 on gp120, and somatic hypermutation is required to accommodate the neighboring V1 loop glycans and glycan heterogeneity. The other branch (prototype bnAb PGT130) lacks the CDRH2 insertion. Antibodies in this branch are noticeably effective at neutralizing viruses with an alternate N334 glycan site but are less able to accommodate glycan heterogeneity. We identify a new somatic variant within this branch that is predominantly dependent on N334. The crystal structure of PGT130 offers insight into differences from PGT128. We conclude that different immunogens may be required to elicit bnAbs that have the optimal characteristics of the two branches of the lineage described. IMPORTANCE: Development of an HIV vaccine is of vital importance for prevention of new infections, and it is thought that elicitation of HIV bnAbs will be an important component of an effective vaccine. Increasingly, bnAbs that bind to the cluster of high-mannose glycans on the HIV envelope glycoprotein, gp120, are being highlighted as important templates for vaccine design. In particular, bnAbs from IAVI donor 36 (PGT125 to PGT131) have been shown to be extremely broad and potent. Combination of these bnAbs enhanced neutralization breadth considerably, suggesting that an optimal immunogen should elicit several antibodies from this family. Here we study the evolution of this antibody family to inform immunogen design. We identify two classes of bnAbs that differ in their recognition of the high-mannose patch and show that different immunogens may be required to elicit these different classes.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , VIH/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/química , Cristalografía por Rayos X , Epítopos/inmunología , Anticuerpos Anti-VIH/química , Humanos , Modelos Moleculares , Conformación Proteica
11.
J Biol Chem ; 288(41): 29943-53, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24003217

RESUMEN

Paramyxovirus genomes are ribonucleoprotein (RNP) complexes consisting of nucleoprotein (N)-encapsidated viral RNA. Measles virus (MeV) N features an amino-terminal RNA-binding core and a 125-residue tail domain, of which only the last 75 residues are considered fully mobile on the nucleocapsid surface. A molecular recognition element (MoRE) domain mediates binding of the viral phosphoprotein (P). This P N-tail interaction is considered instrumental for recruiting the polymerase complex to the template. We have engineered MeV N variants with tail truncations progressively eliminating the MoRE domain and upstream tail sections. Confirming previous reports, RNPs with N truncations lacking the carboxyl-terminal 43-residues harboring the MoRE domain cannot serve as polymerase template. Remarkably, further removal of all tail residues predicted to be surface-exposed significantly restores RNP bioactivity. Insertion of structurally dominant tags into the central N-tail section reduces bioactivity, but the negative regulatory effect of exposed N-tail stems is sequence-independent. Bioactive nucleocapsids lacking exposed N-tail sections are unable to sustain virus replication, because of weakened interaction of the advancing polymerase complex with the template. Deletion of the N-MoRE-binding domain in P abrogates polymerase recruitment to standard nucleocapsids, but polymerase activity is partially restored when N-tail truncated RNPs serve as template. Revising central elements of the current replication model, these data reveal that MeV polymerase is capable of productively docking directly to the nucleocapsid core. Dispensable for polymerase recruitment, N-MoRE binding to P-tail stabilizes the advancing polymerase-RNP complex and may rearrange unstructured central tail sections to facilitate polymerase access to the template.


Asunto(s)
Virus del Sarampión/metabolismo , Nucleoproteínas/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virales/metabolismo , Animales , Sitios de Unión/genética , Línea Celular , Chlorocebus aethiops , Immunoblotting , Virus del Sarampión/genética , Modelos Moleculares , Mutación , Proteínas de la Nucleocápside , Nucleoproteínas/química , Nucleoproteínas/genética , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Células Vero , Proteínas Virales/química , Proteínas Virales/genética , Replicación Viral
12.
J Virol ; 87(20): 11076-87, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23926334

RESUMEN

As we are confronted with an increasing number of emerging and reemerging viral pathogens, the identification of novel pathogen-specific and broad-spectrum antivirals has become a major developmental objective. Targeting of host factors required for virus replication presents a tangible approach toward obtaining novel hits with a broadened indication range. However, the identification of developable host-directed antiviral candidates remains challenging. We describe a novel screening protocol that interrogates the myxovirus host-pathogen interactome for broad-spectrum drug candidates and simultaneously probes for conventional, pathogen-directed hits. With resource efficiency and pan-myxovirus activity as the central developmental parameters, we explored coscreening against two distinct, independently traceable myxoviruses in a single-well setting. Having identified a pair of unrelated pathogenic myxoviruses (influenza A virus and measles virus) with comparable replication kinetics, we observed unimpaired coreplication of both viruses, generated suitable firefly and Renilla luciferase reporter constructs, respectively, and validated the protocol for up to a 384-well plate format. Combined with an independent counterscreen using a recombinant respiratory syncytial virus luciferase reporter, implementation of the protocol identified candidates with a broadened antimyxovirus profile, in addition to pathogen-specific hits. Mechanistic characterization revealed a newly discovered broad-spectrum lead that does not block viral entry but stimulates effector pathways of the innate cellular antiviral response. In summary, we provide proof of concept for the efficient discovery of broad-spectrum myxovirus inhibitors in parallel to para- and orthomyxovirus-specific hit candidates in a single screening campaign. The newly identified compound provides a basis for the development of a novel broad-spectrum small-molecule antiviral class.


Asunto(s)
Antivirales/aislamiento & purificación , Interacciones Huésped-Patógeno/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/aislamiento & purificación , Virus de la Influenza A/efectos de los fármacos , Virus del Sarampión/efectos de los fármacos , Animales , Antivirales/farmacología , Línea Celular , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento , Humanos , Factores Inmunológicos/farmacología
13.
J Biol Chem ; 287(9): 6878-91, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22215662

RESUMEN

All enzymatic activities required for genomic replication and transcription of nonsegmented negative strand RNA viruses (or Mononegavirales) are believed to be concentrated in the viral polymerase (L) protein. However, our insight into the organization of these different enzymatic activities into a bioactive tertiary structure remains rudimentary. Fragments of Mononegavirales polymerases analyzed to date cannot restore bioactivity through trans-complementation, unlike the related L proteins of segmented NSVs. We investigated the domain organization of phylogenetically diverse Paramyxovirus L proteins derived from measles virus (MeV), Nipah virus (NiV), and respiratory syncytial virus (RSV). Through a comprehensive in silico and experimental analysis of domain intersections, we defined MeV L position 615 as an interdomain candidate in addition to the previously reported residue 1708. Only position 1708 of MeV and the homologous positions in NiV and RSV L also tolerated the insertion of epitope tags. Splitting of MeV L at residue 1708 created fragments that were unable to physically interact and trans-complement, but strikingly, these activities were reconstituted by the addition of dimerization tags to the fragments. Equivalently split fragments of NiV, RSV, and MeV L oligomerized with comparable efficiency in all homo- and heterotypic combinations, but only the homotypic pairs were able to trans-complement. These results demonstrate that synthesis as a single polypeptide is not required for the Mononegavirales polymerases to adopt a proper tertiary conformation. Paramyxovirus polymerases are composed of at least two truly independent folding domains that lack a traditional interface but require molecular compatibility for bioactivity. The functional probing of the L domain architecture through trans-complementation is anticipated to be applicable to all Mononegavirales polymerases.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Modelos Químicos , Paramyxoviridae/enzimología , Proteínas Virales/química , Secuencia de Aminoácidos , Animales , Línea Celular , Simulación por Computador , Cricetinae , ARN Polimerasas Dirigidas por ADN/genética , Dimerización , Epítopos/química , Riñón/citología , Datos de Secuencia Molecular , Mutagénesis , Paramyxoviridae/genética , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Virales/genética
14.
mBio ; 13(2): e0265021, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35315691

RESUMEN

Transmission of the New World hemorrhagic fever arenaviruses Junín virus (JUNV) and Machupo virus (MACV) to humans is facilitated, in part, by the interaction between the arenavirus GP1 glycoprotein and the human transferrin receptor 1 (hTfR1). We utilize a mouse model of live-attenuated immunization with envelope exchange viruses to isolate neutralizing monoclonal antibodies (NAbs) specific to JUNV GP1 and MACV GP1. Structures of two NAbs, termed JUN1 and MAC1, demonstrate that they neutralize through disruption of hTfR1 recognition. JUN1 utilizes a binding mode common to all characterized infection- and vaccine-elicited JUNV-specific NAbs, which involves mimicking hTfR1 binding through the insertion of a tyrosine into the receptor-binding site. In contrast, MAC1 undergoes a tyrosine-mediated mode of antigen recognition distinct from that used by the reported anti-JUNV NAbs and the only other characterized anti-MACV NAb. These data reveal the varied modes of GP1-specific recognition among New World arenaviruses by the antibody-mediated immune response. IMPORTANCE The GP1 subcomponent of the New World arenavirus GP is a primary target of the neutralizing antibody response, which has been shown to be effective in the prevention and treatment of infection. Here, we characterize the structural basis of the antibody-mediated immune response that arises from immunization of mice against Junín virus and Machupo virus, two rodent-borne zoonotic New World arenaviruses. We isolate a panel of GP1-specific monoclonal antibodies that recognize overlapping epitopes and exhibit neutralizing behavior, in vitro. Structural characterization of two of these antibodies indicates that antibody recognition likely interferes with GP1-mediated recognition of the transferrin receptor 1. These data provide molecular-level detail for a key region of vulnerability on the New World arenavirus surface and a blueprint for therapeutic antibody development.


Asunto(s)
Arenavirus del Nuevo Mundo , Virus Junin , Animales , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Arenavirus del Nuevo Mundo/metabolismo , Inmunización , Virus Junin/metabolismo , Ratones , Receptores de Transferrina , Tirosina
15.
Cell Rep ; 38(13): 110611, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35354052

RESUMEN

The HIV-1 Envelope glycoprotein (Env) is the sole target for broadly neutralizing antibodies (bnAbs). Env is heavily glycosylated with host-derived N-glycans, and many bnAbs bind to, or are dependent upon, Env glycans for neutralization. Although glycan-binding bnAbs are frequently detected in HIV-infected individuals, attempts to elicit them have been unsuccessful because of the poor immunogenicity of Env N-glycans. Here, we report cross-reactivity of glycan-binding bnAbs with self- and non-self N-glycans and glycoprotein antigens from different life-stages of Schistosoma mansoni. Using the IAVI Protocol C HIV infection cohort, we examine the relationship between S. mansoni seropositivity and development of bnAbs targeting glycan-dependent epitopes. We show that the unmutated common ancestor of the N332/V3-specific bnAb lineage PCDN76, isolated from an HIV-infected donor with S. mansoni seropositivity, binds to S. mansoni cercariae while lacking reactivity to gp120. Overall, these results present a strategy for elicitation of glycan-reactive bnAbs which could be exploited in HIV-1 vaccine development.


Asunto(s)
Infecciones por VIH , VIH-1 , Parásitos , Animales , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH , Humanos , Parásitos/metabolismo , Polisacáridos/metabolismo
17.
mBio ; 12(4): e0253120, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34225492

RESUMEN

Hantaviruses are a group of emerging pathogens capable of causing severe disease upon zoonotic transmission to humans. The mature hantavirus surface presents higher-order tetrameric assemblies of two glycoproteins, Gn and Gc, which are responsible for negotiating host cell entry and constitute key therapeutic targets. Here, we demonstrate that recombinantly derived Gn from Hantaan virus (HTNV) elicits a neutralizing antibody response (serum dilution that inhibits 50% infection [ID50], 1:200 to 1:850) in an animal model. Using antigen-specific B cell sorting, we isolated monoclonal antibodies (mAbs) exhibiting neutralizing and non-neutralizing activity, termed mAb HTN-Gn1 and mAb nnHTN-Gn2, respectively. Crystallographic analysis reveals that these mAbs target spatially distinct epitopes at disparate sites of the N-terminal region of the HTNV Gn ectodomain. Epitope mapping onto a model of the higher order (Gn-Gc)4 spike supports the immune accessibility of the mAb HTN-Gn1 epitope, a hypothesis confirmed by electron cryo-tomography of the antibody with virus-like particles. These data define natively exposed regions of the hantaviral Gn that can be targeted in immunogen design. IMPORTANCE The spillover of pathogenic hantaviruses from rodent reservoirs into the human population poses a continued threat to human health. Here, we show that a recombinant form of the Hantaan virus (HTNV) surface-displayed glycoprotein, Gn, elicits a neutralizing antibody response in rabbits. We isolated a neutralizing (HTN-Gn1) and a non-neutralizing (nnHTN-Gn2) monoclonal antibody and provide the first molecular-level insights into how the Gn glycoprotein may be targeted by the antibody-mediated immune response. These findings may guide rational vaccine design approaches focused on targeting the hantavirus glycoprotein envelope.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Virus Hantaan/genética , Virus Hantaan/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Mapeo Epitopo , Femenino , Células HEK293 , Infecciones por Hantavirus/inmunología , Humanos , Inmunización , Conejos
18.
J Virol ; 83(20): 10480-93, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19656895

RESUMEN

The spatial organization of metastable paramyxovirus fusion (F) and attachment glycoprotein hetero-oligomers is largely unknown. To further elucidate the organization of functional fusion complexes of measles virus (MeV), an archetype of the paramyxovirus family, we subjected central predictions of alternative docking models to experimental testing using three distinct approaches. Carbohydrate shielding through engineered N-glycans indicates close proximity of a membrane-distal, but not membrane-proximal, section of the MeV attachment (H) protein stalk domain to F. Directed mutagenesis of this section identified residues 111, 114, and 118 as modulators of avidity of glycoprotein interactions and determinants of F triggering. Stalk-length variation through deletion or insertion of HR elements at positions flanking this section demonstrates that the location of the stalk segment containing these residues cannot be altered in functional fusion complexes. In contrast, increasing the distance between the H head domains harboring the receptor binding sites and this section through insertion of structurally rigid alpha-helical domains with a pitch of up to approximately 75 A downstream of stalk position 118 partially maintains functionality in transient expression assays and supports efficient growth of recombinant virions. In aggregate, these findings argue against specific protein-protein contacts between the H head and F head domains but instead support a docking model that is characterized by short-range contacts between the prefusion F head and the attachment protein stalk, possibly involving H residues 111, 114, and 118, and extension of the head domain of the attachment protein above prefusion F.


Asunto(s)
Virus del Sarampión/química , Virus del Sarampión/metabolismo , Proteínas Virales de Fusión , Proteínas Virales , Animales , Embrión de Pollo , Chlorocebus aethiops , Cricetinae , Humanos , Virus del Sarampión/genética , Virus del Sarampión/fisiología , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Células Vero , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
19.
Elife ; 92020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33349334

RESUMEN

The intricate lattice of Gn and Gc glycoprotein spike complexes on the hantavirus envelope facilitates host-cell entry and is the primary target of the neutralizing antibody-mediated immune response. Through study of a neutralizing monoclonal antibody termed mAb P-4G2, which neutralizes the zoonotic pathogen Puumala virus (PUUV), we provide a molecular-level basis for antibody-mediated targeting of the hantaviral glycoprotein lattice. Crystallographic analysis demonstrates that P-4G2 binds to a multi-domain site on PUUV Gc and may preclude fusogenic rearrangements of the glycoprotein that are required for host-cell entry. Furthermore, cryo-electron microscopy of PUUV-like particles in the presence of P-4G2 reveals a lattice-independent configuration of the Gc, demonstrating that P-4G2 perturbs the (Gn-Gc)4 lattice. This work provides a structure-based blueprint for rationalizing antibody-mediated targeting of hantaviruses.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Virus Puumala/inmunología , Proteínas Virales de Fusión/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Arvicolinae , Células HEK293 , Humanos
20.
Antimicrob Agents Chemother ; 53(9): 3860-70, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19528268

RESUMEN

No effective therapeutic is currently in place for improved case management of severe measles or the rapid control of outbreaks. Through high-throughput screening, we recently identified a novel small-molecule class that potently blocks activity of the measles virus (MeV) RNA-dependent RNA polymerase (RdRp) complex in transient replicon assays. However, the nature of the block in RdRp activity and the physical target of the compound remained elusive. Through real-time reverse transcription-PCR analysis, we demonstrate that the lead compound AS-136A blocks viral RNA synthesis in the context of an infection. Adaptation of different MeV strains to growth in the presence of the compound identified three candidate hot spots for resistance that are located in conserved domains of the viral polymerase (L protein) subunit of the RdRp complex. Rebuilding of individual mutations in RdRp-driven reporter assays and recombinant MeV traced the molecular basis for resistance to specific mutations in L. Mutations responsible for resistance cluster in the immediate vicinity of the proposed catalytic center for phosphodiester bond formation and neighboring conserved domains of L, providing support for effective inhibition of a paramyxovirus RdRp complex through interaction of a nonnucleoside small-molecule inhibitor with the L protein. Resistance mutations are located in regions of L that are fully conserved among viral isolates, and recombinant MeV harboring individual resistance mutations show some delay in the onset of viral growth in vitro. Taken together, these data support the hypothesis that acquiring mutations in these L domains may reduce virus fitness.


Asunto(s)
Antivirales/farmacología , Virus del Sarampión/efectos de los fármacos , Sarampión/tratamiento farmacológico , ARN Viral/metabolismo , Animales , Antivirales/uso terapéutico , Línea Celular , Chlorocebus aethiops , Cricetinae , Humanos , Sarampión/virología , Virus del Sarampión/genética , Virus del Sarampión/metabolismo , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA