RESUMEN
Immune tolerance mechanisms are shared in cancer and pregnancy. Through cross-analyzing single-cell RNA-sequencing data from multiple human cancer types and the maternal-fetal interface, we found B7-H4 (VTCN1) is an onco-fetal immune tolerance checkpoint. We showed that genetic deficiency of B7-H4 resulted in immune activation and fetal resorption in allogeneic pregnancy models. Analogously, B7-H4 contributed to MPA/DMBA-induced breast cancer progression, accompanied by CD8+ T cell exhaustion. Female hormone screening revealed that progesterone stimulated B7-H4 expression in placental and breast cancer cells. Mechanistically, progesterone receptor (PR) bound to a newly identified -58 kb enhancer, thereby mediating B7-H4 transcription via the PR-P300-BRD4 axis. PR antagonist or BRD4 degrader potentiated immunotherapy in a murine B7-H4+ breast cancer model. Thus, our work unravels a mechanistic and biological connection of a female sex hormone (progesterone) to onco-fetal immune tolerance via B7-H4 and suggests that the PR-P300-BRD4 axis is targetable for treating B7-H4+ cancer.
Asunto(s)
Tolerancia Inmunológica , Progesterona , Progestinas , Inhibidor 1 de la Activación de Células T con Dominio V-Set , Animales , Femenino , Inhibidor 1 de la Activación de Células T con Dominio V-Set/metabolismo , Humanos , Ratones , Embarazo , Progestinas/farmacología , Progestinas/metabolismo , Progesterona/metabolismo , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Receptores de Progesterona/metabolismo , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Ratones Endogámicos C57BL , Placenta/metabolismo , Placenta/inmunologíaRESUMEN
Targeting the p53-MDM2 pathway to reactivate tumor p53 is a chemotherapeutic approach. However, the involvement of this pathway in CD8+ T cell-mediated antitumor immunity is unknown. Here, we report that mice with MDM2 deficiency in T cells exhibit accelerated tumor progression and a decrease in tumor-infiltrating CD8+ T cell survival and function. Mechanistically, MDM2 competes with c-Cbl for STAT5 binding, reduces c-Cbl-mediated STAT5 degradation and enhances STAT5 stability in tumor-infiltrating CD8+ T cells. Targeting the p53-MDM2 interaction with a pharmacological agent, APG-115, augmented MDM2 in T cells, thereby stabilizing STAT5, boosting T cell immunity and synergizing with cancer immunotherapy. Unexpectedly, these effects of APG-115 were dependent on p53 and MDM2 in T cells. Clinically, MDM2 abundance correlated with T cell function and interferon-γ signature in patients with cancer. Thus, the p53-MDM2 pathway controls T cell immunity, and targeting this pathway may treat patients with cancer regardless of tumor p53 status.
Asunto(s)
Linfocitos T CD8-positivos/enzimología , Linfocitos Infiltrantes de Tumor/enzimología , Neoplasias/enzimología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Factor de Transcripción STAT5/metabolismo , Animales , Antineoplásicos/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/trasplante , Línea Celular Tumoral , Terapia Combinada , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Inmunoterapia Adoptiva , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/trasplante , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Estabilidad Proteica , Proteolisis , Proteínas Proto-Oncogénicas c-mdm2/genética , Factor de Transcripción STAT5/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Gut microbiota are linked to chronic inflammation and carcinogenesis. Chemotherapy failure is the major cause of recurrence and poor prognosis in colorectal cancer patients. Here, we investigated the contribution of gut microbiota to chemoresistance in patients with colorectal cancer. We found that Fusobacterium (F.) nucleatum was abundant in colorectal cancer tissues in patients with recurrence post chemotherapy, and was associated with patient clinicopathological characterisitcs. Furthermore, our bioinformatic and functional studies demonstrated that F. nucleatum promoted colorectal cancer resistance to chemotherapy. Mechanistically, F. nucleatum targeted TLR4 and MYD88 innate immune signaling and specific microRNAs to activate the autophagy pathway and alter colorectal cancer chemotherapeutic response. Thus, F. nucleatum orchestrates a molecular network of the Toll-like receptor, microRNAs, and autophagy to clinically, biologically, and mechanistically control colorectal cancer chemoresistance. Measuring and targeting F. nucleatum and its associated pathway will yield valuable insight into clinical management and may ameliorate colorectal cancer patient outcomes.
Asunto(s)
Autofagia , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Fusobacterium nucleatum/fisiología , Microbioma Gastrointestinal , Animales , Antineoplásicos/uso terapéutico , Capecitabina/uso terapéutico , Neoplasias Colorrectales/metabolismo , Resistencia a Antineoplásicos , Xenoinjertos , Ratones , MicroARNs/metabolismo , Trasplante de Neoplasias , Compuestos de Platino/uso terapéutico , Recurrencia , Receptores Toll-Like/metabolismo , Microambiente TumoralRESUMEN
Effector T cells and fibroblasts are major components in the tumor microenvironment. The means through which these cellular interactions affect chemoresistance is unclear. Here, we show that fibroblasts diminish nuclear accumulation of platinum in ovarian cancer cells, resulting in resistance to platinum-based chemotherapy. We demonstrate that glutathione and cysteine released by fibroblasts contribute to this resistance. CD8(+) T cells abolish the resistance by altering glutathione and cystine metabolism in fibroblasts. CD8(+) T-cell-derived interferon (IFN)γ controls fibroblast glutathione and cysteine through upregulation of gamma-glutamyltransferases and transcriptional repression of system xc(-) cystine and glutamate antiporter via the JAK/STAT1 pathway. The presence of stromal fibroblasts and CD8(+) T cells is negatively and positively associated with ovarian cancer patient survival, respectively. Thus, our work uncovers a mode of action for effector T cells: they abrogate stromal-mediated chemoresistance. Capitalizing upon the interplay between chemotherapy and immunotherapy holds high potential for cancer treatment.
Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Resistencia a Antineoplásicos , Neoplasias Ováricas/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Cisplatino/uso terapéutico , Femenino , Fibroblastos/metabolismo , Glutatión/metabolismo , Humanos , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones DesnudosRESUMEN
Live regulatory T cells (Treg cells) suppress antitumor immunity, but how Treg cells behave in the metabolically abnormal tumor microenvironment remains unknown. Here we show that tumor Treg cells undergo apoptosis, and such apoptotic Treg cells abolish spontaneous and PD-L1-blockade-mediated antitumor T cell immunity. Biochemical and functional analyses show that adenosine, but not typical suppressive factors such as PD-L1, CTLA-4, TGF-ß, IL-35, and IL-10, contributes to apoptotic Treg-cell-mediated immunosuppression. Mechanistically, apoptotic Treg cells release and convert a large amount of ATP to adenosine via CD39 and CD73, and mediate immunosuppression via the adenosine and A2A pathways. Apoptosis in Treg cells is attributed to their weak NRF2-associated antioxidant system and high vulnerability to free oxygen species in the tumor microenvironment. Thus, the data support a model wherein tumor Treg cells sustain and amplify their suppressor capacity through inadvertent death via oxidative stress. This work highlights the oxidative pathway as a metabolic checkpoint that controls Treg cell behavior and affects the efficacy of therapeutics targeting cancer checkpoints.
Asunto(s)
Apoptosis/inmunología , Antígeno B7-H1/metabolismo , Tolerancia Inmunológica/inmunología , Neoplasias Ováricas/inmunología , Estrés Oxidativo/fisiología , Linfocitos T Reguladores/inmunología , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Adenosina/metabolismo , Animales , Antígenos CD/metabolismo , Apirasa/metabolismo , Antígeno CTLA-4/metabolismo , Femenino , Proteínas Ligadas a GPI/genética , Humanos , Interleucina-10/metabolismo , Interleucinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/metabolismo , Oxígeno/metabolismo , Receptor de Adenosina A2A/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Células Tumorales Cultivadas , Microambiente Tumoral/inmunologíaRESUMEN
Aerobic glycolysis regulates T cell function. However, whether and how primary cancer alters T cell glycolytic metabolism and affects tumor immunity in cancer patients remains a question. Here we found that ovarian cancers imposed glucose restriction on T cells and dampened their function via maintaining high expression of microRNAs miR-101 and miR-26a, which constrained expression of the methyltransferase EZH2. EZH2 activated the Notch pathway by suppressing Notch repressors Numb and Fbxw7 via trimethylation of histone H3 at Lys27 and, consequently, stimulated T cell polyfunctional cytokine expression and promoted their survival via Bcl-2 signaling. Moreover, small hairpin RNA-mediated knockdown of human EZH2 in T cells elicited poor antitumor immunity. EZH2(+)CD8(+) T cells were associated with improved survival in patients. Together, these data unveil a metabolic target and mechanism of cancer immune evasion.
Asunto(s)
Regulación Neoplásica de la Expresión Génica/inmunología , MicroARNs , Neoplasias/inmunología , Complejo Represivo Polycomb 2/inmunología , Linfocitos T/inmunología , Escape del Tumor/inmunología , Animales , Separación Celular , Inmunoprecipitación de Cromatina , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Glucólisis , Humanos , Immunoblotting , Melanoma Experimental/inmunología , Ratones Endogámicos C57BL , Neoplasias Ováricas/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Matrices Tisulares , TransfecciónRESUMEN
Abnormal epigenetic patterns correlate with effector T cell malfunction in tumours1-4, but the cause of this link is unknown. Here we show that tumour cells disrupt methionine metabolism in CD8+ T cells, thereby lowering intracellular levels of methionine and the methyl donor S-adenosylmethionine (SAM) and resulting in loss of dimethylation at lysine 79 of histone H3 (H3K79me2). Loss of H3K79me2 led to low expression of STAT5 and impaired T cell immunity. Mechanistically, tumour cells avidly consumed methionine and outcompeted T cells for methionine by expressing high levels of the methionine transporter SLC43A2. Genetic and biochemical inhibition of tumour SLC43A2 restored H3K79me2 in T cells, thereby boosting spontaneous and checkpoint-induced tumour immunity. Moreover, methionine supplementation improved the expression of H3K79me2 and STAT5 in T cells, and this was accompanied by increased T cell immunity in tumour-bearing mice and patients with colon cancer. Clinically, tumour SLC43A2 correlated negatively with T cell histone methylation and functional gene signatures. Our results identify a mechanistic connection between methionine metabolism, histone patterns, and T cell immunity in the tumour microenvironment. Thus, cancer methionine consumption is an immune evasion mechanism, and targeting cancer methionine signalling may provide an immunotherapeutic approach.
Asunto(s)
Sistema de Transporte de Aminoácidos L/metabolismo , Linfocitos T CD8-positivos/metabolismo , Histonas/metabolismo , Metionina/metabolismo , Metilación , Neoplasias/metabolismo , Sistema de Transporte de Aminoácidos L/deficiencia , Animales , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Epigénesis Genética , Femenino , Histonas/química , Humanos , Ratones , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Receptores de Antígenos de Linfocitos T/metabolismo , Factor de Transcripción STAT5/metabolismoRESUMEN
Despite the remarkable clinical success of immunotherapies in a subset of cancer patients, many fail to respond to treatment and exhibit resistance. Here, we found that genetic or pharmacologic inhibition of the lipid kinase PIKfyve, a regulator of autophagic flux and lysosomal biogenesis, upregulated surface expression of major histocompatibility complex class I (MHC-I) in cancer cells via impairing autophagic flux, resulting in enhanced cancer cell killing mediated by CD8+ T cells. Genetic depletion or pharmacologic inhibition of PIKfyve elevated tumor-specific MHC-I surface expression, increased intratumoral functional CD8+ T cells, and slowed tumor progression in multiple syngeneic mouse models. Importantly, enhanced antitumor responses by Pikfyve-depletion were CD8+ T cell- and MHC-I-dependent, as CD8+ T cell depletion or B2m knockout rescued tumor growth. Furthermore, PIKfyve inhibition improved response to immune checkpoint blockade (ICB), adoptive cell therapy, and a therapeutic vaccine. High expression of PIKFYVE was also predictive of poor response to ICB and prognostic of poor survival in ICB-treated cohorts. Collectively, our findings show that targeting PIKfyve enhances immunotherapies by elevating surface expression of MHC-I in cancer cells, and PIKfyve inhibitors have potential as agents to increase immunotherapy response in cancer patients.
Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Ratones , Animales , Humanos , Genes MHC Clase I , Antígenos de Histocompatibilidad Clase I , Inmunoterapia/métodos , Lípidos , Neoplasias/genética , Neoplasias/terapiaRESUMEN
Cancer immunotherapy restores or enhances the effector function of CD8+ T cells in the tumour microenvironment1,2. CD8+ T cells activated by cancer immunotherapy clear tumours mainly by inducing cell death through perforin-granzyme and Fas-Fas ligand pathways3,4. Ferroptosis is a form of cell death that differs from apoptosis and results from iron-dependent accumulation of lipid peroxide5,6. Although it has been investigated in vitro7,8, there is emerging evidence that ferroptosis might be implicated in a variety of pathological scenarios9,10. It is unclear whether, and how, ferroptosis is involved in T cell immunity and cancer immunotherapy. Here we show that immunotherapy-activated CD8+ T cells enhance ferroptosis-specific lipid peroxidation in tumour cells, and that increased ferroptosis contributes to the anti-tumour efficacy of immunotherapy. Mechanistically, interferon gamma (IFNγ) released from CD8+ T cells downregulates the expression of SLC3A2 and SLC7A11, two subunits of the glutamate-cystine antiporter system xc-, impairs the uptake of cystine by tumour cells, and as a consequence, promotes tumour cell lipid peroxidation and ferroptosis. In mouse models, depletion of cystine or cysteine by cyst(e)inase (an engineered enzyme that degrades both cystine and cysteine) in combination with checkpoint blockade synergistically enhanced T cell-mediated anti-tumour immunity and induced ferroptosis in tumour cells. Expression of system xc- was negatively associated, in cancer patients, with CD8+ T cell signature, IFNγ expression, and patient outcome. Analyses of human transcriptomes before and during nivolumab therapy revealed that clinical benefits correlate with reduced expression of SLC3A2 and increased IFNγ and CD8. Thus, T cell-promoted tumour ferroptosis is an anti-tumour mechanism, and targeting this pathway in combination with checkpoint blockade is a potential therapeutic approach.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Ferroptosis , Inmunoterapia , Neoplasias/inmunología , Neoplasias/terapia , Sistema de Transporte de Aminoácidos y+/metabolismo , Animales , Antígeno B7-H1/antagonistas & inhibidores , Línea Celular Tumoral , Cisteína/metabolismo , Femenino , Ferroptosis/efectos de los fármacos , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Humanos , Interferón gamma/inmunología , Peroxidación de Lípido , Melanoma/genética , Melanoma/inmunología , Melanoma/metabolismo , Melanoma/terapia , Ratones , Neoplasias/metabolismo , Nivolumab/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Resultado del TratamientoRESUMEN
ESK981 is a potent tyrosine kinase and PIKfyve lipid kinase inhibitor. This phase II trial evaluated the efficacy of ESK981 as a single agent in patients with androgen receptor-positive (AR +) metastatic castration-resistant prostate cancer (mCRPC). Eligible patients had mCRPC with progression on AR-targeted agents and without prior chemotherapy treatment. Each patient received 160 mg ESK981 once daily for 5 days per week for 4 weeks per cycle (except for an adverse event (AE) occurrence). The primary endpoints were a 50% reduction in prostate-specific antigen (PSA50), and safety. Secondary endpoints included the time and the duration of PSA response, PSA progression rates, PSA progression free survival (PFS) and overall survival (OS). Exploratory investigations included whole exome sequencing in patients before treatment, and morphological evaluation of biopsy samples pre- and post-treatment. PSA was evaluated in 13 patients. Only one patient (7.7% two-sided 95% Wilson CI (0.4%, 33.3%)) experienced a reduction in their PSA levels by 50% or more. The most common grade 3 treatment-related AEs were cardiac disorders, diarrhea, hypertension, alanine transaminase and aspartate transaminase elevations. No grade 4-5 events occurred. Median PFS was 1.8 months, and median OS was 12.1 months. Peripheral immune cells showed increased T cell activation and cytokine production in two patients who received 12-weeks of ESK981. Although relatively well tolerated, ESK981 alone showed no anti-tumor activity in patients with AR + mCRPC and its further evaluation as a single agent in AR + mCRPC is not warranted. (Trial registration: ClinicalTrials.gov, NCT03456804. Registration date: March 7, 2018).
RESUMEN
Little is known about how the immune system impacts human colorectal cancer invasiveness and stemness. Here we detected interleukin-22 (IL-22) in patient colorectal cancer tissues that was produced predominantly by CD4(+) T cells. In a mouse model, migration of these cells into the colon cancer microenvironment required the chemokine receptor CCR6 and its ligand CCL20. IL-22 acted on cancer cells to promote activation of the transcription factor STAT3 and expression of the histone 3 lysine 79 (H3K79) methytransferase DOT1L. The DOT1L complex induced the core stem cell genes NANOG, SOX2, and Pou5F1, resulting in increased cancer stemness and tumorigenic potential. Furthermore, high DOT1L expression and H3K79me2 in colorectal cancer tissues was a predictor of poor patient survival. Thus, IL-22(+) cells promote colon cancer stemness via regulation of stemness genes that negatively affects patient outcome. Efforts to target this network might be a strategy in treating colorectal cancer patients.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Neoplasias Colorrectales/inmunología , Interleucinas/inmunología , Metiltransferasas/inmunología , Células Madre Neoplásicas/inmunología , Factor de Transcripción STAT3/inmunología , Animales , Línea Celular Tumoral , Proliferación Celular , Quimiocina CCL20/inmunología , Quimiocina CCL20/metabolismo , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Activación Enzimática/inmunología , Células HT29 , N-Metiltransferasa de Histona-Lisina , Proteínas de Homeodominio/inmunología , Proteínas de Homeodominio/metabolismo , Humanos , Metiltransferasas/metabolismo , Ratones , Proteína Homeótica Nanog , Trasplante de Neoplasias , Células Madre Neoplásicas/patología , Factor 3 de Transcripción de Unión a Octámeros/inmunología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Receptores CCR6/inmunología , Receptores CCR6/metabolismo , Factores de Transcripción SOXB1/inmunología , Factores de Transcripción SOXB1/metabolismo , Factor de Transcripción STAT3/metabolismo , Interleucina-22RESUMEN
Myeloid-derived suppressor cells (MDSCs) and cancer stem cells (CSCs) are important cellular components in the cancer microenvironment and may affect cancer phenotype and patient outcome. The nature of MDSCs and their interaction with CSCs in ovarian carcinoma are unclear. We examined the interaction between MDSCs and CSCs in patients with ovarian carcinoma and showed that MDSCs inhibited T cell activation and enhanced CSC gene expression, sphere formation, and cancer metastasis. MDSCs triggered miRNA101 expression in cancer cells. miRNA101 subsequently repressesed the corepressor gene C-terminal binding protein-2 (CtBP2), and CtBP2 directly targeted stem cell core genes resulting in increased cancer cell stemness and increasing metastatic and tumorigenic potential. Increased MDSC density and tumor microRNA101 expression predict poor survival, as does decreased tumor CtBP2 expression, independent of each other. Collectively, our work identifies an immune-associated cellular, molecular, and clinical network involving MDSCs-microRNA101-CtBP2-stem cell core genes, which extrinsically controls cancer stemness and impacts patient outcome.
Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , MicroARNs/metabolismo , Células Mieloides/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neoplasias Ováricas/inmunología , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/genética , Comunicación Celular , Proteínas Co-Represoras , Femenino , Humanos , Activación de Linfocitos , MicroARNs/genética , Células Mieloides/citología , Células Mieloides/inmunología , Metástasis de la Neoplasia , Células Madre Neoplásicas/inmunología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Neoplasias Ováricas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Linfocitos T/inmunologíaRESUMEN
Epigenetic silencing including histone modifications and DNA methylation is an important tumorigenic mechanism. However, its role in cancer immunopathology and immunotherapy is poorly understood. Using human ovarian cancers as our model, here we show that enhancer of zeste homologue 2 (EZH2)-mediated histone H3 lysine 27 trimethylation (H3K27me3) and DNA methyltransferase 1 (DNMT1)-mediated DNA methylation repress the tumour production of T helper 1 (TH1)-type chemokines CXCL9 and CXCL10, and subsequently determine effector T-cell trafficking to the tumour microenvironment. Treatment with epigenetic modulators removes the repression and increases effector T-cell tumour infiltration, slows down tumour progression, and improves the therapeutic efficacy of programmed death-ligand 1 (PD-L1; also known as B7-H1) checkpoint blockade and adoptive T-cell transfusion in tumour-bearing mice. Moreover, tumour EZH2 and DNMT1 are negatively associated with tumour-infiltrating CD8(+) T cells and patient outcome. Thus, epigenetic silencing of TH1-type chemokines is a novel immune-evasion mechanism of tumours. Selective epigenetic reprogramming alters the T-cell landscape in cancer and may enhance the clinical efficacy of cancer therapy.
Asunto(s)
Quimiocinas/genética , Epigénesis Genética , Silenciador del Gen , Inmunoterapia , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/terapia , Células TH1/metabolismo , Animales , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Quimiocina CXCL10/biosíntesis , Quimiocina CXCL10/genética , Quimiocina CXCL10/inmunología , Quimiocina CXCL9/biosíntesis , Quimiocina CXCL9/genética , Quimiocina CXCL9/inmunología , Quimiocinas/biosíntesis , Quimiocinas/inmunología , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2 , Epigénesis Genética/efectos de los fármacos , Femenino , Histonas/química , Histonas/metabolismo , Humanos , Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Lisina/metabolismo , Ratones , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Complejo Represivo Polycomb 2/metabolismo , Pronóstico , Células TH1/inmunología , Células Tumorales Cultivadas , Escape del Tumor/inmunología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Naive T cells are thought to be functionally quiescent. In this study, we studied and compared the phenotype, cytokine profile, and potential function of human naive CD4+ T cells in umbilical cord and peripheral blood. We found that naive CD4+ T cells, but not memory T cells, expressed high levels of chemokine CXCL8. CXCL8+ naive T cells were preferentially enriched CD31+ T cells and did not express T cell activation markers or typical Th effector cytokines, including IFN-γ, IL-4, IL-17, and IL-22. In addition, upon activation, naive T cells retained high levels of CXCL8 expression. Furthermore, we showed that naive T cell-derived CXCL8 mediated neutrophil migration in the in vitro migration assay, supported tumor sphere formation, and promoted tumor growth in an in vivo human xenograft model. Thus, human naive T cells are phenotypically and functionally heterogeneous and can carry out active functions in immune responses.
Asunto(s)
Células Sanguíneas/fisiología , Interleucina-8/metabolismo , Neoplasias Experimentales/inmunología , Neutrófilos/fisiología , Linfocitos T/fisiología , Cordón Umbilical/patología , Animales , Carcinogénesis , Línea Celular Tumoral , Movimiento Celular , Citocinas/metabolismo , Regulación de la Expresión Génica , Humanos , Interleucina-8/genética , Activación de Linfocitos , Ratones , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Hepatocellular carcinoma (HCC) is highly associated with inflammation. Myeloid cells, including tumor-associated macrophages and myeloid-derived suppressor cells, are abundant in the HCC microenvironment and are often associated with poor prognosis. Myeloid cells in HCC play a vital role in supporting tumor initiation, progression, angiogenesis, metastasis, and therapeutic resistance. Here, we summarize our current knowledge about myeloid cells in HCC and focus on their immune-suppressive activities and tumor-promoting functions, as well as the relevance to potential new therapies in HCC.
Asunto(s)
Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas/etiología , Células Mieloides/fisiología , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/inmunología , Humanos , Tolerancia Inmunológica , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inmunología , RatonesRESUMEN
BACKGROUND & AIMS: Cancer stem cells (CSCs) can contribute to hepatocellular carcinoma (HCC) progression and recurrence after therapy. The presence of tumor-associated macrophages (TAMs) in patients with HCC is associated with poor outcomes. It is not clear whether TAMs interact with CSCs during HCC development. We investigated whether TAMs affect the activities of CSCs in the microenvironment of human HCCs. METHODS: HCCs were collected from 17 patients during surgical resection and single-cell suspensions were analyzed by flow cytometry. CD14(+) TAMs were isolated from the HCC cell suspensions and placed into co-culture with HepG2 or Hep3B cells, and CSC functions were measured. The interleukin 6 (IL6) receptor was blocked with a monoclonal antibody (tocilizumab), and signal transducer and activator of transcription 3 was knocked down with small hairpin RNAs in HepG2 cells. Xenograft tumors were grown in NOD-SCID/Il2Rg(null) mice from human primary HCC cells or HepG2 cells. RESULTS: CD44(+) cells from human HCCs and cell lines formed more spheres in culture and more xenograft tumors in mice than CD44(-) cells, indicating that CD44(+) cells are CSCs. Incubation of the CD44(+) cells with TAMs promoted expansion of CD44(+) cells, and increased their sphere formation in culture and formation of xenograft tumors in mice. In human HCC samples, the numbers of TAMs correlated with the numbers of CD44(+) cells. Of all cytokines expressed by TAMs, IL6 was increased at the highest level in human HCC co-cultures, compared with TAMs not undergoing co-culture. IL6 was detected in the microenvironment of HCC samples and induced expansion of CD44(+) cells in culture. Levels of IL6 correlated with stages of human HCCs and detection of CSC markers. Incubation of HCC cell lines with tocilizumab or knockdown of signal transducer and activator of transcription 3 in HCC cells reduced the ability of TAMs to promote sphere formation by CD44+ cells in culture and growth of xenograft tumors in mice. CONCLUSIONS: CD44(+) cells isolated from human HCC tissues and cell lines have CSC activities in vitro and form a larger number of xenograft tumors in mice than CD44(-) cells. TAMs produce IL6, which promotes expansion of these CSCs and tumorigenesis. Levels of IL6 in human HCC samples correlate with tumor stage and markers of CSCs. Blockade of IL6 signaling with tocilizumab, a drug approved by the Food and Drug Administration for treatment of rheumatoid arthritis, inhibits TAM-stimulated activity of CD44(+) cells. This drug might be used to treat patients with HCC.
Asunto(s)
Carcinoma Hepatocelular/inmunología , Interleucina-6/inmunología , Neoplasias Hepáticas/inmunología , Macrófagos/inmunología , Células Madre Neoplásicas/inmunología , Factor de Transcripción STAT3/inmunología , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Técnicas de Cocultivo , Células Hep G2 , Humanos , Receptores de Hialuranos/metabolismo , Interleucina-6/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Macrófagos/citología , Macrófagos/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Immune checkpoint inhibitors can stimulate antitumor immunity but can also induce toxicities termed immune-related adverse events (irAEs). Colitis is a common and severe irAE that can lead to treatment discontinuation. Mechanistic understanding of gut irAEs has been hampered because robust colitis is not observed in laboratory mice treated with checkpoint inhibitors. We report here that this limitation can be overcome by using mice harboring the microbiota of wild-caught mice, which develop overt colitis following treatment with anti-CTLA-4 antibodies. Intestinal inflammation is driven by unrestrained activation of IFNγ-producing CD4+ T cells and depletion of peripherally induced regulatory T cells through Fcγ receptor signaling. Accordingly, anti-CTLA-4 nanobodies that lack an Fc domain can promote antitumor responses without triggering colitis. This work suggests a strategy for mitigating gut irAEs while preserving antitumor stimulating effects of CTLA-4 blockade.
Asunto(s)
Linfocitos T CD4-Positivos , Colitis , Inhibidores de Puntos de Control Inmunológico , Activación de Linfocitos , Microbiota , Receptores de IgG , Animales , Ratones , Linfocitos T CD4-Positivos/inmunología , Colitis/etiología , Colitis/microbiología , Antígeno CTLA-4/antagonistas & inhibidores , Microbiota/inmunología , Receptores de IgG/inmunología , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Ratones Endogámicos C57BLRESUMEN
Epigenetic modulation is well established in hematologic malignancies but to a lesser degree in solid tumors. Here we report the results of a phase Ib/II study of guadecitabine and durvalumab in advanced clear cell renal cell carcinoma (ccRCC; NCT03308396). Patients received guadecitabine (starting at 60 mg/m2 subcutaneously on days 1-5 with de-escalation to 45 mg/m2 in case of dose limiting toxicity) with durvalumab (1500 mg intravenously on day 8). The study enrolled 57 patients, 6 in phase Ib with safety being the primary objective and 51in phase II, comprising 2 cohorts: 36 patients in Cohort 1 were treatment naive to checkpoint inhibitors (CPI) with 0-1 prior therapies and 15 patients in Cohort 2 were treated with up to two prior systemic therapies including one CPI. The combination of guadecitabine 45 mg/m2 with durvalumab 1500 mg was deemed safe. The primary objective of overall response rate (ORR) in cohort 1 was 22%. Sixteen patients (44%) experienced stable disease (SD). Secondary objectives included overall survival (OS), duration of response, progression-free survival (PFS), clinical benefit rate, and safety as well as ORR for Cohort 2. Median PFS for cohort 1 and cohort 2 were 14.26 and 3.91 months respectively. Median OS was not reached. In cohort 2, one patient achieved a partial response and 60% achieved SD. Asymptomatic neutropenia was the most common adverse event. Even though the trial did not meet the primary objective in cohort 1, the tolerability and PFS signal in CPI naive patients are worth further investigation.
Asunto(s)
Anticuerpos Monoclonales , Carcinoma de Células Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Azacitidina/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversosRESUMEN
Tumor-associated macrophages (TAMs) shape tumor immunity and therapeutic efficacy. However, it is poorly understood whether and how post-translational modifications (PTMs) intrinsically affect the phenotype and function of TAMs. Here, we reveal that peptidylarginine deiminase 4 (PAD4) exhibits the highest expression among common PTM enzymes in TAMs and negatively correlates with the clinical response to immune checkpoint blockade. Genetic and pharmacological inhibition of PAD4 in macrophages prevents tumor progression in tumor-bearing mouse models, accompanied by an increase in macrophage major histocompatibility complex (MHC) class II expression and T cell effector function. Mechanistically, PAD4 citrullinates STAT1 at arginine 121, thereby promoting the interaction between STAT1 and protein inhibitor of activated STAT1 (PIAS1), and the loss of PAD4 abolishes this interaction, ablating the inhibitory role of PIAS1 in the expression of MHC class II machinery in macrophages and enhancing T cell activation. Thus, the PAD4-STAT1-PIAS1 axis is an immune restriction mechanism in macrophages and may serve as a cancer immunotherapy target.
Asunto(s)
Hidrolasas , Procesamiento Proteico-Postraduccional , Ratones , Animales , Desiminasas de la Arginina Proteica/metabolismo , Arginina Deiminasa Proteína-Tipo 4/genética , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Hidrolasas/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Macrófagos/metabolismoRESUMEN
The modern armamentarium for cancer treatment includes immunotherapy and targeted therapy, such as protein kinase inhibitors. However, the mechanisms that allow cancer-targeting drugs to effectively mobilize dendritic cells (DCs) and affect immunotherapy are poorly understood. Here, we report that among shared gene targets of clinically relevant protein kinase inhibitors, high PIKFYVE expression was least predictive of complete response in patients who received immune checkpoint blockade (ICB). In immune cells, high PIKFYVE expression in DCs was associated with worse response to ICB. Genetic and pharmacological studies demonstrated that PIKfyve ablation enhanced DC function via selectively altering the alternate/non-canonical NF-κB pathway. Both loss of Pikfyve in DCs and treatment with apilimod, a potent and specific PIKfyve inhibitor, restrained tumor growth, enhanced DC-dependent T cell immunity, and potentiated ICB efficacy in tumor-bearing mouse models. Furthermore, the combination of a vaccine adjuvant and apilimod reduced tumor progression in vivo. Thus, PIKfyve negatively controls DCs, and PIKfyve inhibition has promise for cancer immunotherapy and vaccine treatment strategies.