Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Inorg Chem ; 62(49): 20030-20041, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37991724

RESUMEN

A new linear trinuclear Co(II)3 complex with a formula of [{Co(µ-L)}2Co] has been prepared by self-assembly of Co(II) ions and the N3O3-tripodal Schiff base ligand H3L, which is obtained from the condensation of 1,1,1-tris(aminomethyl)ethane and salicylaldehyde. Single X-ray diffraction shows that this compound is centrosymmetric with triple-phenolate bridging groups connecting neighboring Co(II) ions, leading to a paddle-wheel-like structure with a pseudo-C3 axis lying in the Co-Co-Co direction. The Co(II) ions at both ends of the Co(II)3 molecule exhibit distorted trigonal prismatic CoN3O3 geometry, whereas the Co(II) at the middle presents an elongated trigonal antiprismatic CoO6 geometry. The combined analysis of the magnetic data and theoretical calculations reveal strong easy-axis magnetic anisotropy for both types of Co(II) ions (|D| values higher than 115 cm-1) with the local anisotropic axes lying on the pseudo-C3 axis of the molecule. The magnetic exchange interaction between the middle and ends Co(II) ions, extracted by using either a Hamiltonian accounting for the isotropic magnetic coupling and ZFS or the Lines' model, was found to be medium to strong and antiferromagnetic in nature, whereas the interaction between the external Co(II) ions is weak antiferromagnetic. Interestingly, the compound exhibits slow relaxation of magnetization and open hysteresis at zero field and therefore SMM behavior. The significant magnetic exchange coupling found for [{Co(µ-L)}2Co] is mainly responsible for the quenching of QTM, which combined with the easy-axis local anisotropy of the CoII ions and the collinearity of their local anisotropy axes with the pseudo-C3 axis favors the observation of SMM behavior at zero field.

2.
Chemistry ; 26(62): 14242-14251, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-32649799

RESUMEN

A mononuclear iron(III) porphyrin compound exhibiting unexpectedly slow magnetic relaxation, which is a characteristic of single-ion magnet behaviour, is reported. This behaviour originates from the close proximity (≈550 cm-1 ) of the intermediate-spin S=3/2 excited states to the high-spin S=5/2 ground state. More quantitatively, although the ground state is mostly S=5/2, a spin-admixture model evidences a sizable contribution (≈15 %) of S=3/2 to the ground state, which as a consequence experiences large and positive axial anisotropy (D=+19.2 cm-1 ). Frequency-domain EPR spectroscopy allowed the mS = |±1/2⟩→|±3/2⟩ transitions to be directly accessed, and thus the very large zero-field splitting in this 3d5 system to be unambiguously measured. Other experimental results including magnetisation, Mössbauer, and field-domain EPR studies are consistent with this model, which is also supported by theoretical calculations.

3.
Chemistry ; 23(48): 11649-11661, 2017 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-28605076

RESUMEN

Three new closely related CoII YIII complexes of general formula [Co(µ-L)(µ-X)Y(NO3 )2 ] (X- =NO3- 1, benzoate 2, or 9-anthracenecarboxylato 3) have been prepared with the compartmental ligand N,N',N''-trimethyl-N,N''-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H2 L). In these complexes, CoII and YIII are triply bridged by two phenoxide groups belonging to the di-deprotonated ligand (L2- ) and one ancillary anion X- . The change of the ancillary bridging group connecting CoII and YIII ions induces small differences in the trigonally distorted CoN3 O3 coordination sphere with a concomitant tuning of the magnetic anisotropy and intermolecular interactions. Direct current magnetic, high-frequency and -field EPR (HFEPR), frequency domain Fourier transform THz electron paramagnetic resonance (FD-FT THz-EPR) measurements, and ab initio theoretical calculations demonstrate that CoII ions in compounds 1-3 have large and positive D values (≈50 cm-1 ), which decrease with increasing the distortion of the pseudo-octahedral CoII coordination sphere. Dynamic ac magnetic susceptibility measurements indicate that compound 1 exhibits field-induced single-molecule magnet (SMM) behavior, whereas compounds 2 and 3 only display this behavior when they are magnetically diluted with diamagnetic ZnII (Zn/Co=10:1). In view of this, it is always advisable to use magnetically diluted complexes, in which intermolecular interactions and quantum tunneling of magnetism (QTM) would be at least partly suppressed, so that "hidden single-ion magnet (SIM)" behavior could emerge. Field- and temperature-dependence of the relaxation times indicate the prevalence of the Raman process in all these complexes above approximately 3 K.

4.
ACS Omega ; 9(24): 26149-26158, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38911747

RESUMEN

In this study, we synthesized a new Co(II) complex, [NMe4]2[Co(bpyO2)2] (1), using deprotonated 2,2'-bipyridine-6,6'-diol ligands (bpyO2 2-). This compound exhibits a significant zero-field splitting (D) value. The far-infrared magneto spectroscopy and high-frequency and field electron paramagnetic resonance (HFEPR) measurements indicated that compound 1 possesses D = -54.8 cm-1 and E ∼ 0 cm-1. These findings were subsequently confirmed by other experimental data, including DC magnetic susceptibilities and variable temperature and variable magnetic field reduced magnetizations. Additionally, we conducted a series of AC magnetic susceptibility measurements to investigate the kinetics of magnetization relaxation. Below 6.6 K and under zero external magnetic field, fast quantum tunneling of magnetization (QTM) dominates (∼570 Hz), and temperature-independent out-of-phase signals are observed. Above 8.1 K, temperature-dependent behavior is observed. Furthermore, we examined the AC magnetic susceptibility behavior under external magnetic fields ranging from 300 to 4000 G. The effect of QTM is significantly reduced in the presence of an external magnetic field. Temperature-dependent behavior is primarily governed by Raman relaxation. Through structural analysis of compound 1 and a series of pure nitrogen-coordinated single-ion magnets (SIMs), we propose that the oxo substituents from the double-deprotonated form of the 2,2'-bipyridine-6,6'-diol ligands donate their negative charge to the pyridine ring, forming amido anion sites. This triggers a more pronounced out-of-phase signal than that observed in pure pyridine-coordinated compounds. Moreover, we observed intermolecular interactions, including intermolecular hydrogen bonding, which, to some extent, influenced the slow relaxation of molecules. Therefore, we speculate that the slow relaxation phenomenon of compound 1 may be attributed to the combination of oxo back-donating effects and intermolecular interactions.

5.
Dalton Trans ; 43(29): 11269-76, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24668287

RESUMEN

A combination of SQUID and pulsed high-field magnetometry is used to probe the nature of mixed valency in an Fe(II)Fe7(III) cluster. DFT-computed spin Hamiltonian parameters suggest that antiferromagnetic coupling dominates, and that electron transfer both between the four irons of the cubane core (t1) and between a cubane and three neighboring irons (t2) is significant. Simulations using the computed parameters are able to reproduce the key features of the measured effective magnetic moment, µeff(T), over the 2 < T < 300 K temperature range. In contrast, the field dependence of the molar magnetization, Mmol, measured at 0.4 K is inconsistent with substantial electron transfer: only values of t2∼ 0 place the separation between ground and first excited states in the region indicated by experiment. The apparent quenching of the cubane-outer electron transfer at very low temperatures indicates that vibronic coupling generates one or more shallow minima on the adiabatic potential energy surfaces that serve to trap the itinerant electron in the cubane core.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA