Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39201510

RESUMEN

This study aims to improve the photocatalytic properties of titanium dioxide nanorods (TNRs) and other related nanostructures (dense nanorods, needle-like nanorods, nanoballs, and nanoflowers) by modifying them with silver nanoparticles (AgNPs). This preparation is carried out using a two-step method: sol-gel dip-coating deposition combined with hydrothermal crystal growth. Further modification with AgNPs was achieved through the photoreduction of Ag+ ions under UV illumination. The investigation explores the impact of different growth factors on the morphological development of TiO2 nanostructures by modulating (i) the chemical composition, the water:acid ratio, (ii) the precursor concentration involved in the hydrothermal process, and (iii) the duration of the hydrothermal reaction. Morphological characteristics, including the length, diameter, and nanorod density of the nanostructures, were analyzed using scanning electron microscope (SEM). The chemical states were determined through use of the X-ray photoelectron spectroscopy (XPS) technique, while phase composition and crystalline structure analysis was performed using the Grazing Incidence X-ray Diffraction (GIXRD) method. The results indicate that various nanostructures (dense nanorods, needle-like nanorods, nanoballs, and nanoflowers) can be obtained by modifying these parameters. The photocatalytic efficiency of these nanostructures and Ag-coated nanostructures was assessed by measuring the degradation of the organic dye rhodamine B (RhB) under both ultraviolet (UV) irradiation and visible light. The results clearly show that UV light causes the RhB solution to lose its color, whereas under visible light RhB changes into rhodamine 110, indicating a successful photocatalytic transformation. The nanoball-like structures' modification with the active metal silver (TNRs 4 Ag) exhibited high photocatalytic efficiency under both ultraviolet (UV) and visible light for different chemical composition parameters. The nanorod structure (TNRs 2 Ag) is more efficient under UV, but under visible-light photocatalyst, the TNRs 6 Ag (dense nanorods) sample is more effective.


Asunto(s)
Nanopartículas del Metal , Plata , Titanio , Titanio/química , Plata/química , Nanopartículas del Metal/química , Catálisis , Nanoestructuras/química , Rodaminas/química , Procesos Fotoquímicos , Nanotubos/química , Rayos Ultravioleta , Fotólisis , Difracción de Rayos X , Espectroscopía de Fotoelectrones
2.
Phys Chem Chem Phys ; 24(19): 11828-11835, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35508202

RESUMEN

Within the presented work, we propose a complex photoemission-based approach for the investigation of the C60ThSe2 dyad (C60ThSe2)/indium-tin oxide (ITO) interface formation. For surface topography and basic morphology determination, atomic force microscopy was utilized, and the results showed that C60ThSe2 agglomerated into close-to-spherical crystallites and the island-like growth was the dominant type for fullerene growth on the ITO substrate. Further, detailed X-ray and UV-photoelectron spectroscopies (XPS, UPS) were used for thorough characterization of the chemical and electronic properties of the investigated structures. Experiments were conducted by means of cyclic voltammetry and UV-VIS techniques for both deposition purposes and for determination of the basic electronic structure. As a result, we present the detailed characterization of the chemical and energy structures with a clear designation of the mutual influence of both materials on their counterparts. Among others, the accurate photoemission signal decomposition of the overlapping signals was done with respect to obtaining the energy-related information depth. The obtained data clearly showed that an interface dipole (0.56 eV) was created between the ITO substrate and organic overlayer at the ultrathin coverage stage. Since our results point out the most probable charge-carrier relocation in the vicinity of the interface, this together with the dipole existence should be taken into account while creating energy-level cascades for various (e.g., photovoltaic or organic electronic) applications. The work may also provide insights for engineers working with a vast range of organic-based electronics while designing devices based on fullerene/ITO hybrid structures.

3.
Sensors (Basel) ; 22(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36560314

RESUMEN

Rapid and accurate detection of lethal volatile compounds is an emerging requirement to ensure the security of the current and future society. Since the threats are becoming more complex, the assurance of future sensing devices' performance can be obtained solely based on a thorough fundamental approach, by utilizing physics and chemistry together. In this work, we have applied thermal desorption spectroscopy (TDS) to study dimethyl methylophosphate (DMMP, sarin analogue) adsorption on zinc phthalocyanine (ZnPc), aiming to achieve the quantification of the sensing mechanism. Furthermore, we utilize a novel approach to TDS that involves quantum chemistry calculations for the determination of desorption activation energies. As a result, we have provided a comprehensive description of DMMP desorption processes from ZnPc, which is the basis for successful future applications of sarin ZnPc-based sensors. Finally, we have verified the sensing capability of the studied material at room temperature using impedance spectroscopy and took the final steps towards demonstrating ZnPc as a promising sarin sensor candidate.


Asunto(s)
Sustancias para la Guerra Química , Compuestos Organometálicos , Sustancias para la Guerra Química/análisis , Sarín , Compuestos Organometálicos/química , Compuestos de Zinc
4.
Langmuir ; 35(21): 6888-6897, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31050896

RESUMEN

The effect of the solvent on the formation of thiol self-assembled monolayers (SAMs) on oxide-covered, reactive metals is more involved than in the well-studied gold-thiol system. In this work, copper covered with a native oxide was modified with 1-octadecanethiol (ODT) in either tetrahydrofuran or ethanol. Infrared spectroscopy indicated the formation of crystalline chain packing of alkyl chains from both solvents. Surface coverage was approximately equal in both systems, with differences in tilt angles of the chains. A detailed analysis by X-ray photoelectron spectroscopy showed the formation of Cu2S and copper-bound carbon when the adsorption was carried out in ethanol. This observation can be explained by the cleavage of the C-S bond in ODT during adsorption. Based on the analogy of preparations, we reason that the solvation of ODT in ethanol must be such that it weakens the C-S bond in ODT, thus enabling the cleavage of this bond. Based on the evidence presented here, it is not possible to distinguish between surface solvation and bulk solvation. Electrochemical linear sweep voltammetry shows that SAMs from both solvents have an enhancing protective effect compared to the native oxide layer. The results from this work show interesting possibilities for the preparation of adsorbed monolayers with chemical interaction to reactive metals, with some similarities to carbene-based SAMs.

5.
Phys Chem Chem Phys ; 20(23): 16092-16101, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29855007

RESUMEN

Reduced tin dioxide/copper phthalocyanine (SnOx/CuPc) heterojunctions recently gained much attention in hybrid electronics due to their defect structure, allowing tuning of the electronic properties at the interface towards particular needs. In this work, we focus on the creation and analysis of the interface between the oxide and organic layer. The inorganic/organic heterojunction was created by depositing CuPc on SnOx layers prepared with the rheotaxial growth and vacuum oxidation (RGVO) method. Exploiting surface sensitive photoelectron spectroscopy techniques, angle dependent X-ray and UV photoelectron spectroscopy (ADXPS and UPS, respectively), supported by semi-empirical simulations, the role of carbon from adventitious organic adsorbates directly at the SnOx/CuPc interface was investigated. The adventitious organic adsorbates were blocking electronic interactions between the environment and surface, hence pinning energy levels. A significant interface dipole of 0.4 eV was detected, compensating for the difference in work functions of the materials in contact, however, without full alignment of the energy levels. From the ADXPS and UPS results, a detailed diagram of the interfacial electronic structure was constructed, giving insight into how to tailor SnOx/CuPc heterojunctions towards specific applications. On the one hand, parasitic surface contamination could be utilized in technology for passivation-like processes. On the other hand, if one needs to keep the oxide's surficial interactions fully accessible, like in the case of stacked electronic systems or gas sensor applications, carbon contamination must be carefully avoided at each processing step.

6.
Phys Chem Chem Phys ; 19(19): 11816-11824, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28470285

RESUMEN

A tin oxide/copper phthalocyanine (CuPc) layer stack was investigated with two complementary photoemission methods. Non-destructive analysis of the electronic properties at the SnOx/CuPc interface was performed applying angle-dependent measurements with X-ray photoelectron spectroscopy (ADXPS) and energy-resolved photoemission yield spectroscopy (PYS). The different components (related to oxide layer and organic overlayer as well as to contamination features) observed in the spectra were assigned to a particular layer by relative depth plot analysis. ADXPS allowed determination of the chemical and electronic structure of the investigated samples. The addition of the organic ultra-thin film to the oxide layer caused a significant increase of the structure's photoemission yield. The combination of ADXPS and PYS allowed determination of the work function of constituent layers, and charge transfer phenomena at the SnOx/CuPc buried interface. An interface dipole of 0.23 eV was detected, assigned to charge transfer across the interface from the oxide layer towards the organic film. The energy level alignment at the SnOx/CuPc interface was determined, and presented in a band-like diagram, together with depth-dependent changes of the core energy levels of the structure's constituents. Finally the role of the oxide's defect-related energy levels in the charge transfer was discussed. The results obtained exhibit significance ranging from investigation, basic understanding and application of such hybrid films. Application of these results in hybrid electronic devices can help understanding and furthering this technology.

7.
Phys Chem Chem Phys ; 17(15): 10004-13, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25785505

RESUMEN

In the present work, thin ZnO layers were synthesized by the sol-gel method with subsequent spin-coating on Si(100). We show that the detailed analysis of lab-recorded photoemission spectra in combination with Kelvin probe data yielded the work function, ionization energy, and valence band - Fermi level separation - and hence enabled the construction of band diagrams of the examined layers. With small modifications in preparation, very different films can be obtained. One set shows a homogeneous depth-dependent n carrier distribution, and another a significant carrier concentration gradient from n-type conductivity to almost metal-like n(+) character. Likewise, the surface morphology can be tuned from a uniform, compact surface with spherical single-nm sized grain-like features to a structured surface with 5-10 nm tall crystallites with (002) dominating crystal orientation. Based on the band-bending and the energy levels observed, defects of contradictory nature, i.e. acceptor-donor-trap (ADT) properties, were identified. These defects may be groups of point defects, with opposite character. The ADT states affect the energy levels of the oxide layers and due to their nature cannot be considered in the photoemission experiment as mutually independent. The versatile nature of the synthesis provides us with the opportunity to tune the properties with a high degree of freedom, at low processing costs, yielding layers with an exotic electronic structure. Such layers are interesting candidates for applications in photovoltaic and nanoelectronic devices.

8.
Sci Rep ; 14(1): 11106, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750130

RESUMEN

Transforming amines with low boiling points and high volatilities into protic salts is a versatile strategy to utilize low molecular weight compounds as precursors for N-doped carbon structures in a straightforward carbonization procedure. Herein, conventional mineral acids commonly used for the synthesis of protic salts were replaced by bio-derived phytic acid, which, combined with various amines and amino acids, yielded partially or fully bio-derived protic salts. The biomass-based salts showed higher char-forming ability than their mineral acid-based analogs (up to 55.9% at 800°), simultaneously providing carbon materials with significant porosity (up to 1177 m2g-1) and a considerable level of N,P,O-doping. Here, we present the first comprehensive study on the correlation between the structure of the bio-derived protic precursors and the properties of derived carbon materials to guide future designs of biomass-derived precursors for the one-step synthesis of sustainable carbon materials. Additionally, we demonstrate how to improve the textural properties of the protic-salt-derived carbons (which suffer from high brittleness) by simply upgrading them into highly flexible nanocomposites using high-quality single-walled carbon nanotubes. Consequently, self-standing electrodes for the oxygen reduction reaction were created.

9.
Chem Commun (Camb) ; 59(49): 7659-7662, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37259945

RESUMEN

We present a novel external-catalyst-free route for the synthesis of N-doped carbon nanotubes (N-CNTs) from amino-acid-derived carbon dots (CDs) as sustainable resources. N-CNTs (∼4-26 at% of N) were comprehensively characterized by complementary techniques while the synthetic strategy emerges as an important alternative and, simultaneously, a simply-scalable approach.


Asunto(s)
Nanotubos de Carbono , Puntos Cuánticos , Catálisis
10.
Nanoscale Horiz ; 8(5): 685-694, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36919756

RESUMEN

In this work, a Pluronic/Dextran system was developed to discover the mechanism of the aqueous two-phase extraction (ATPE) technique, which is widely employed for the sorting of single-walled carbon nanotubes (SWCNTs) and other types of nanomaterials. The role of the phase-forming components and partitioning modulators was comprehensively investigated to gain greater insights into the differentiation process. The obtained results revealed that sodium dodecyl sulfate and sodium dodecylbenzene sulfonate operated as excellent partitioning modulators, enabling the diameter-based sorting of SWCNTs. Additionally, the data strongly suggested that different densities of various SWCNT species drove the movement of SWCNTs in the ATPE system. Consequently, the largest diameter SWCNTs were first influenced by surfactants and, thus, the nanotubes migrated towards a lower density top phase in the following order (7,5) > (8,3) > (6,5) > (6,4). Based on the in-depth analysis of the partitioning system, a mechanism was proposed that described the method in which the popular ATPE separation technique operates.

11.
Sci Rep ; 13(1): 13049, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567895

RESUMEN

The excess presence of phosphate(V) ions in the biosphere is one of the most serious problems that negatively affect aqueous biocenosis. Thus, phosphates(V) separation is considered to be important for sustainable development. In the presented study, an original cerium(IV)-modified chitosan-based hydrogel (Ce-CTS) was developed using the chemical co-precipitation method and then used as an adsorbent for efficient removal of phosphate(V) ions from their aqueous solutions. From the scientific point of view, it represents a completely new physicochemical system. It was found that the adsorptive removal of phosphate(V) anions by the Ce-CTS adsorbent exceeded 98% efficiency which is ca. 4-times higher compared with the chitosan-based hydrogel without any modification (non-cross-linked CTS). The best result of the adsorption capacity of phosphates(V) on the Ce-CTS adsorbent, equal to 71.6 mg/g, was a result of adsorption from a solution with an initial phosphate(V) concentration 9.76 mg/dm3 and pH 7, an adsorbent dose of 1 g/dm3, temperature 20 °C. The equilibrium interphase distribution data for the Ce-CTS adsorbent and aqueous solution of phosphates(V) agreed with the theoretical Redlich-Peterson and Hill adsorption isotherm models. From the kinetic point of view, the pseudo-second-order model explained the phosphates(V) adsorption rate for Ce-CTS adsorbent the best. The specific effect of porous structure of adsorbent influencing the diffusional mass transfer resistances was identified using Weber-Morris kinetic model. The thermodynamic study showed that the process was exothermic and the adsorption ran spontaneously. Modification of CTS with cerium(IV) resulted in the significant enhancement of the chitosan properties towards both physical adsorption (an increase of the point of zero charge of adsorbent), and chemical adsorption (through the presence of Ce(IV) that demonstrates a chemical affinity for phosphate(V) anions). The elaborated and experimentally verified highly effective adsorbent can be successfully applied to uptake phosphates(V) from aqueous systems. The Ce-CTS adsorbent is stable in the conditions of the adsorption process, no changes in the adsorbent structure or leaching of the inorganic filling were observed.

12.
ACS Meas Sci Au ; 2(6): 553-567, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36785776

RESUMEN

A hybrid catalytic system composed of copper (I)-oxide-derived copper nanocenters immobilized within the network of tungsten oxide nanowires has exhibited electrocatalytic activity toward CO2 reduction in an acid medium (0.5 mol dm-3 H2SO4). The catalytic system facilitates conversion of CO2 to methanol and is fairly selective with respect to the competing hydrogen evolution. The preparative procedure has involved voltammetric electroreduction of Cu2O toward the formation and immobilization of catalytic Cu sites within the hexagonal structures of WO3 nanowires which are simultaneously partially reduced to mixed-valence hydrogen tungsten (VI, V) oxide bronzes, H x WO3, coexisting with sub-stoichiometric tungsten (VI, IV) oxides, WO3-y . After the initial loss of Cu through its dissolution to Cu2+ during positive potential scanning up to 1 V (vs RHE), the remaining copper is not electroactive and seems to be trapped within in the network of hexagonal WO3. Using the ultramicroelectrode-based probe, evidence has also been provided that partially reduced nonstoichiometric tungsten oxides induce reduction of CO2 to the CO-type reaction intermediates. The chronocoulometric data are consistent with the view that existence of copper sites dispersed in WO3 improves electron transfers and charge propagation within the hybrid catalytic layer. The enhanced tolerance of the catalyst to the competitive hydrogen evolution during CO2R should be explained in terms of the ability of H x WO3 to consume protons and absorb hydrogen as well as to shift the proton discharge at Cu toward more negative potentials. However, the capacity of WO3 to interact with catalytic copper and to adsorb CO-type reaction intermediates is expected to facilitate removal of the poisoning CO-type adsorbates from Cu sites.

13.
ACS Omega ; 7(45): 41165-41176, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36406556

RESUMEN

Carbon quantum dots (CQDs) were synthesized via a green, one-step hydrothermal method. As CQD precursors, nine amino acids of different structural descriptors (negatively/positively charged in water, polar, hydrophobic, sulfur-containing, and other/complex ones) were surveyed: Asp, Cys, Gly, His, Leu, Lys, Phe, Pro, and Ser. The reactions were performed in an autoclave in the presence of citric acid at 180 °C for 24 h and yielded core-shell CQDs. CQDs were comprehensively characterized by transmission electron microscopy, dynamic light scattering, Raman, UV/Vis, infrared, X-ray photoelectron spectroscopy, and fluorescence spectroscopy. At the excitation wavelength of λex = 350 nm, Cys-, Phe-, Leu-, and Lys-based CQDs displayed the highest quantum yield blue fluorescence-90 ± 5, 90 ± 4, 87 ± 5, and 67 ± 3%, respectively-superior to the conventional fluorescent dyes. Strikingly, for Lys- and Phe-CQDs, dissimilar trends in the excitation-emission wavelength relationships were identified, that is, constantly strong red shifts versus excitation wavelength-independent emission. Cys- and Lys-CQDs were water-dispersible toward the narrow unimodal distribution of hydrodynamic diameters-0.6 and 2.5 nm, respectively. Additionally, Lys- and Cys-CQDs, with high absolute zeta potential values, formed stable aqueous colloids in a broad range of pH (2, 7, and 12). The results constitute important premises for water-based applications of CQDs, such as bioimaging or photocatalysis.

14.
Sci Rep ; 12(1): 7004, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35487941

RESUMEN

Carbon nanotubes (CNTs) play a unique role in the area of flexible conductors as they have remarkably high electrical conductivity and bend easily without deformation. Consequently, CNTs are commonly deposited on substrates as conductive tracks/coatings. Halogenated solvents are often employed to facilitate the deposition process because they dry rapidly due to their high volatility. In this work, we report that halogenated solvents can dope CNTs considerably. The study showed that the use of dichloromethane, chloroform, or bromoform for the CNT deposition significantly impacts the chemical potential of the material, thereby modifying its charge transport characteristics. As a consequence, up to four-fold improvement in electrical conductivity is noted due to doping.

15.
J Biomed Mater Res B Appl Biomater ; 110(2): 367-381, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34302425

RESUMEN

Implantation of ureteral stents is associated with inconvenience for the patient, which is related to the natural ability of the ureter to contract. The most frequently used solution is the systemic administration of a diastolic drug, which has a relaxing effect on smooth muscle cells and decreases inconvenience. Current interdisciplinary research aimed at reducing the complications after the implantation of ureteral stents used in the treatment of upper urinary tracts with regard to infection, initiation of encrustation, and fragmentation of stents, and patient pain has not been resolved. This study presents the results of research regarding the impact of a biodegradable coating with the active substance on the physical and chemical properties of ureteral stents used in the treatment of the upper urinary tract. The surface of polyurethane double-J stents was coated with poly(lactide-glycolide) (PLGA) 85/15 loaded with papaverine hydrochloride (PAP) with diastolic properties. The coating for ureteral stents has been designed for short-term implantation. The effect of the coating on the process of encrustation and PAP release by the dynamic in vitro model with artificial urine (AU) up to 30 days was evaluated. The influence of AU on the physical and chemical properties of ureteral stents was determined. As part of the study, surface structure and topography researches; chemical composition analyses using X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and wetting; and surface roughness studies of both PUR stents and coated stents were carried out. The proposed biodegradable PLGA+PAP coating is characterized by controlled drug release, while optimal physicochemical properties does not increase the encrustation process.


Asunto(s)
Papaverina , Uréter , Dioxanos , Humanos , Papaverina/farmacología , Poliuretanos/química , Poliuretanos/farmacología , Stents
16.
Materials (Basel) ; 14(11)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34200077

RESUMEN

Two highly efficient commercial organic photosensitizers-azure A (AA) and 5-(4-aminophenyl)-10,15,20-(triphenyl)porphyrin (APTPP)-were covalently attached to the glass surface to form a photoactive monolayer. The proposed straightforward strategy consists of three steps, i.e., the initial chemical grafting of 3-aminopropyltriethoxysilane (APTES) followed by two chemical postmodification steps. The chemical structure of the resulting mixed monolayer (MIX_TC_APTES@glass) was widely characterized by X-ray photoelectron (XPS) and Raman spectroscopies, while its photoactive properties were investigated in situ by UV-Vis spectroscopy with α-terpinene as a chemical trap. It was shown that both photosensitizers retain their activity toward light-activated generation of reactive oxygen species (ROS) after immobilization on the glassy surface and that the resulting nanolayer shows high stability. Thanks to the complementarity of the spectral properties of AA and APTPP, the effectiveness of the ROS photogeneration under broadband illumination can be optimized. The reported light-activated nanocoating demonstrated promising antimicrobial activity toward Escherichia coli (E. coli), by reducing the number of adhered bacteria compared to the unmodified glass surface.

17.
Ultramicroscopy ; 233: 113435, 2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34864284

RESUMEN

Morphologically diverse copper phthalocyanine (CuPc) thin layers were thermally characterized by scanning thermal microscopy (SThM). The organic layers with thicknesses below 1 µm were deposited by physical vapor deposition in a high vacuum on the N-BK 7 glass substrates. Four set of samples were fabricated and studied. Atomic Force Microscopy imaging revealed strong differences in the surface roughness, mean grain size/height, as well as distances between grains for the CuPc layers. For quantitative thermal investigations, three active SThM operating modes were applied using either a Wollaston thermal probe (ThP) or KNT ThP as thermal probe heated with a DC, an AC (3ω-SThM) current or their combination (DC/AC SThM). Meanwhile, qualitative analysis was performed by thermal surface imaging. The results of this study revealed a correlation between the morphology and the local thermophysical properties of the examined CuPc thin layers. It was found that the heat transport properties in such layers will deteriorate with the increase of the surface roughness and porosity. Those results can be a valuable contribution to the further development of phthalocyanine-based devices.

18.
Sci Rep ; 11(1): 8649, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883634

RESUMEN

Carbon nanotubes (CNTs) are materials with exceptional electrical, thermal, mechanical, and optical properties. Ever since it was demonstrated that they also possess interesting thermoelectric properties, they have been considered a promising solution for thermal energy harvesting. In this study, we present a simple method to enhance their performance. For this purpose, thin films obtained from high-quality single-walled CNTs (SWCNTs) were doped with a spectrum of inorganic and organic halide compounds. We studied how incorporating various halide species affects the electrical conductivity, the Seebeck coefficient, and the Power Factor. Since thermoelectric devices operate under non-ambient conditions, we also evaluated these materials' performance at elevated temperatures. Our research shows that appropriate dopant selection can result in almost fivefold improvement to the Power Factor compared to the pristine material. We also demonstrate that the chemical potential of the starting CNT network determines its properties, which is important for deciphering the true impact of chemical and physical functionalization of such ensembles.

19.
J Phys Chem C Nanomater Interfaces ; 125(24): 13542-13550, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34276868

RESUMEN

Phthalocyanines (Pc), with or without metal ligands, are still of high research interest, mainly for the application in organic electronics. Because of rather low solubility, Pc-based films are commonly deposited applying various advanced and demanding vacuum techniques, like physical vapor deposition (PVD). In this work, an alternative straightforward approach of NiPc layer formation is proposed in which NH2-side groups of nickel(II) tetraamino-phthalocyanine (AmNiPc) are engaged in the process of electrochemical deposition of (AmNiPc)layer on indium-tin oxide (ITO) substrates. The resulting layer is widely investigated by cyclic voltammetry, atomic force microscopy, UV-vis, and ATR-IR spectroscopies, X-ray diffraction, and photoemission techniques: X-ray and UV-photoelectron spectroscopies. The chemical and electronic structure of (AmNiPc)layer is characterized. It is shown that the electronic properties of the formed (AmNiPc)layer/ITO hybrid correspond to the ones previously reported for PVD-NiPc films.

20.
Chem Commun (Camb) ; 57(63): 7814-7817, 2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34270643

RESUMEN

The effect of the zeta potential of nano zero-valent iron (nZVI) and carbocatalyst on the activation of persulfate was investigated. The oxidation experiments were performed on three different compounds, with variously modified nZVI and three distinct carbocatalysts. From the obtained results, an evident linear correlation between nanoparticles' zeta potential and reaction rate constants of these three compounds oxidation may be observed. This phenomenon is not mechanism-specific and occurs for the radical and non-radical processes. The present work indicates the critical influence of the surface charge of nZVI and carbocatalysts on the persulfate catalytic activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA