Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Mater ; 18(10): 1124-1132, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31133730

RESUMEN

Ex vivo CRISPR gene editing in haematopoietic stem and progenitor cells has opened potential treatment modalities for numerous diseases. The current process uses electroporation, sometimes followed by virus transduction. While this complex manipulation has resulted in high levels of gene editing at some genetic loci, cellular toxicity was observed. We have developed a CRISPR nanoformulation based on colloidal gold nanoparticles with a unique loading design capable of cellular entry without the need for electroporation or viruses. This highly monodispersed nanoformulation avoids lysosomal entrapment and localizes to the nucleus in primary human blood progenitors without toxicity. Nanoformulation-mediated gene editing is efficient and sustained with different CRISPR nucleases at multiple loci of therapeutic interest. The engraftment kinetics of nanoformulation-treated primary cells in humanized mice are better relative to those of non-treated cells, with no differences in differentiation. Here we demonstrate non-toxic delivery of the entire CRISPR payload into primary human blood progenitors.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Nanopartículas del Metal/química , Células Madre/citología , Animales , Sangre , Electroporación , Oro/química , Humanos
2.
Proc Natl Acad Sci U S A ; 107(14): 6459-64, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20308550

RESUMEN

The phosphatase and tensin homolog (PTEN) is a tumor suppressor that is inactivated in many human cancers. PTEN loss has been associated with resistance to inhibitors of the epidermal growth factor receptor (EGFR), but the molecular basis of this resistance is unclear. It is believed that unopposed phosphatidylinositol-3-kinase (PI3K) activation through multiple receptor tyrosine kinases (RTKs) can relieve PTEN-deficient cancers from their "dependence" on EGFR or any other single RTK for survival. Here we report a distinct resistance mechanism whereby PTEN inactivation specifically raises EGFR activity by impairing the ligand-induced ubiquitylation and degradation of the activated receptor through destabilization of newly formed ubiquitin ligase Cbl complexes. PTEN-associated resistance to EGFR kinase inhibitors is phenocopied by expression of dominant negative Cbl and can be overcome by more complete EGFR kinase inhibition. PTEN inactivation does not confer resistance to inhibitors of the MET or PDGFRA kinase. Our study identifies a critical role for PTEN in EGFR signal termination and suggests that more potent EGFR inhibition should overcome resistance caused by PI3K pathway activation.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Fosfohidrolasa PTEN/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Animales , Apoptosis , Línea Celular , Activación Enzimática , Humanos , Ratones , Ratones Noqueados , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Unión Proteica , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Ubiquitinación
3.
Mol Ther Methods Clin Dev ; 19: 438-446, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33294492

RESUMEN

Current approaches for hematopoietic stem cell gene therapy typically involve lentiviral gene transfer in tandem with a conditioning regimen to aid stem cell engraftment. Although many pseudotyped envelopes have the capacity to be immunogenic due to their viral origins, thus far immune responses against the most common envelope, vesicular stomatitis virus glycoprotein G (VSV-G), have not been reported in hematopoietic stem cell gene therapy trials. Herein, we report on two Fanconi anemia patients who underwent autologous transplantation of a lineage-depleted, gene-modified hematopoietic stem cell product without conditioning. We observed the induction of robust VSV-G-specific immunity, consistent with low/undetectable gene marking in both patients. Upon further interrogation, adaptive immune mechanisms directed against VSV-G were detected following transplantation in both patients, including increased VSV-G-specific T cell responses, anti-VSV-G immunoglobulin G (IgG), and cytotoxic responses that can specifically kill VSV-G-expressing target cell lines. A proportion of healthy controls also displayed preexisting VSV-G-specific CD4+ and CD8+ T cell responses, as well as VSV-G-specific IgG. Taken together, these data show that VSV-G-pseudotyped lentiviral vectors have the ability to elicit interfering adaptive immune responses in the context of certain hematopoietic stem cell transplantation settings.

4.
Hematol Oncol Clin North Am ; 31(5): 897-912, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28895855

RESUMEN

Hematopoietic stem cells (HSCs) are unique in their ability to self-renew and generate all blood lineages for the entire life. HSC modification affects red blood cells, platelets, lymphocytes, and myeloid cells. Chemotherapy can result in myelosuppression, limiting effective chemotherapy administration. For diseases like glioblastoma, high expression of methlylguanine methyltransferase can inactivate alkylating agent chemotherapy. Here we discuss how HSCs can be modified to overcome this resistance, permitting sensitization of tumors to chemotherapy while simultaneously protecting the hematopoietic system. We also discuss how HSCs can be harnessed to produce powerful tumor killing T cells, potentially benefitting and complementing T-cell-based immunotherapies.


Asunto(s)
Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Neoplasias/genética , Neoplasias/terapia , Animales , Ensayos Clínicos como Asunto , Resistencia a Antineoplásicos/genética , Edición Génica , Ingeniería Genética , Terapia Genética/métodos , Vectores Genéticos/genética , Supervivencia de Injerto/genética , Supervivencia de Injerto/inmunología , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/citología , Humanos , Inmunoterapia , Neoplasias/inmunología , Transducción Genética , Transgenes , Resultado del Tratamiento
5.
Nat Commun ; 7: 13173, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27762266

RESUMEN

Haematopoietic stem cell (HSC) gene therapy has demonstrated potential to treat many diseases. However, current state of the art requires sophisticated ex vivo gene transfer in a dedicated Good Manufacturing Practices facility, limiting availability. An automated process would improve the availability and standardized manufacture of HSC gene therapy. Here, we develop a novel program for semi-automated cell isolation and culture equipment to permit complete benchtop generation of gene-modified CD34+ blood cell products for transplantation. These cell products meet current manufacturing quality standards for both mobilized leukapheresis and bone marrow, and reconstitute human haematopoiesis in immunocompromised mice. Importantly, nonhuman primate autologous gene-modified CD34+ cell products are capable of stable, polyclonal multilineage reconstitution with follow-up of more than 1 year. These data demonstrate proof of concept for point-of-care delivery of HSC gene therapy. Given the many target diseases for gene therapy, there is enormous potential for this approach to treat patients on a global scale.


Asunto(s)
Automatización de Laboratorios/instrumentación , Separación Celular/métodos , Terapia Genética/métodos , Células Madre Hematopoyéticas/citología , Lentivirus/genética , Transducción Genética/métodos , Animales , Antígenos CD34/genética , Antígenos CD34/metabolismo , Automatización de Laboratorios/normas , Biomarcadores/metabolismo , Separación Celular/instrumentación , Separación Celular/normas , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Humanos , Lentivirus/metabolismo , Macaca nemestrina , Ratones , Coloración y Etiquetado/métodos , Transducción Genética/normas
6.
Cancer Discov ; 2(5): 458-71, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22588883

RESUMEN

UNLABELLED: Activation of the epidermal growth factor receptor (EGFR) in glioblastoma (GBM) occurs through mutations or deletions in the extracellular (EC) domain. Unlike lung cancers with EGFR kinase domain (KD) mutations, GBMs respond poorly to the EGFR inhibitor erlotinib. Using RNAi, we show that GBM cells carrying EGFR EC mutations display EGFR addiction. In contrast to KD mutants found in lung cancer, glioma-specific EGFR EC mutants are poorly inhibited by EGFR inhibitors that target the active kinase conformation (e.g., erlotinib). Inhibitors that bind to the inactive EGFR conformation, however, potently inhibit EGFR EC mutants and induce cell death in EGFR-mutant GBM cells. Our results provide first evidence for single kinase addiction in GBM and suggest that the disappointing clinical activity of first-generation EGFR inhibitors in GBM versus lung cancer may be attributed to the different conformational requirements of mutant EGFR in these 2 cancer types. SIGNIFICANCE: Approximately 40% of human glioblastomas harbor oncogenic EGFR alterations, but attempts to therapeutically target EGFR with first-generation EGFR kinase inhibitors have failed. Here, we demonstrate selective sensitivity of glioma-specific EGFR mutants to ATP-site competitive EGFR kinase inhibitors that target the inactive conformation of the catalytic domain.


Asunto(s)
Neoplasias Encefálicas/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Glioma/genética , Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/farmacología , Adenosina Trifosfato/metabolismo , Animales , Antineoplásicos/farmacología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib , Glioma/metabolismo , Humanos , Lapatinib , Neoplasias Pulmonares/metabolismo , Ratones , Mutación , Quinazolinas/farmacología
7.
Cancer Cell ; 16(1): 44-54, 2009 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-19573811

RESUMEN

Loss-of-function mutations in the NF1 tumor suppressor result in deregulated Ras signaling and drive tumorigenesis in the familial cancer syndrome neurofibromatosis type I. However, the extent to which NF1 inactivation promotes sporadic tumorigenesis is unknown. Here we report that NF1 is inactivated in sporadic gliomas via two mechanisms: excessive proteasomal degradation and genetic loss. NF1 protein destabilization is triggered by the hyperactivation of protein kinase C (PKC) and confers sensitivity to PKC inhibitors. However, complete genetic loss, which only occurs when p53 is inactivated, mediates sensitivity to mTOR inhibitors. These studies reveal an expanding role for NF1 inactivation in sporadic gliomagenesis and illustrate how different mechanisms of inactivation are utilized in genetically distinct tumors, which consequently impacts therapeutic sensitivity.


Asunto(s)
Genes Supresores de Tumor , Glioblastoma/genética , Glioma/genética , Mutación , Neurofibromatosis 1/genética , Neurofibromina 1/antagonistas & inhibidores , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Células 3T3 , Animales , Regulación hacia Abajo , Genes p53 , Genes ras , Glioblastoma/enzimología , Glioma/enzimología , Ratones , Neurofibromatosis 1/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
8.
Immunity ; 27(2): 268-80, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17692540

RESUMEN

The Bcl-2-associated X protein (Bax) and Bcl-2-antagonist/killer (Bak) are essential regulators of lymphocyte apoptosis, but whether they play a role in viable T cell function remains unclear. Here, we report that T cells lacking both Bax and Bak display defects in antigen-specific proliferation because of Ca(2+)-signaling defects. Bax(-/-), Bak(-/-) T cells displayed defective T cell receptor (TCR)- and inositol-1,4,5-trisphosphate (IP(3))-dependent Ca(2+) mobilization because of altered endoplasmic reticulum (ER) Ca(2+) regulation that was reversed by Bax's reintroduction. The ability of TCR-dependent Ca(2+) signals to stimulate mitochondrial NADH production in excess of that utilized for ATP synthesis was dependent on Bax and Bak. Blunting of Ca(2+)-induced mitochondrial NADH elevation in the absence of Bax and Bak resulted in decreased reactive-oxygen-species production, which was required for T cell proliferation. Together, the data establish that Bax and Bak play an essential role in the control of T cell proliferation by modulating ER Ca(2+) release.


Asunto(s)
Apoptosis/inmunología , Señalización del Calcio , Retículo Endoplásmico/inmunología , Linfocitos T/inmunología , Proteína Destructora del Antagonista Homólogo bcl-2/fisiología , Proteína X Asociada a bcl-2/fisiología , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Proliferación Celular , Metabolismo Energético , Homeostasis , Inositol 1,4,5-Trifosfato/metabolismo , Ratones , Ratones Mutantes , Mitocondrias/metabolismo , NAD/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/genética
9.
Mol Cell ; 18(3): 283-93, 2005 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-15866171

RESUMEN

Replicative cell division is an energetically demanding process that can be executed only if cells have sufficient metabolic resources to support a doubling of cell mass. Here we show that proliferating mammalian cells have a cell-cycle checkpoint that responds to glucose availability. The glucose-dependent checkpoint occurs at the G(1)/S boundary and is regulated by AMP-activated protein kinase (AMPK). This cell-cycle arrest occurs despite continued amino acid availability and active mTOR. AMPK activation induces phosphorylation of p53 on serine 15, and this phosphorylation is required to initiate AMPK-dependent cell-cycle arrest. AMPK-induced p53 activation promotes cellular survival in response to glucose deprivation, and cells that have undergone a p53-dependent metabolic arrest can rapidly reenter the cell cycle upon glucose restoration. However, persistent activation of AMPK leads to accelerated p53-dependent cellular senescence. Thus, AMPK is a cell-intrinsic regulator of the cell cycle that coordinates cellular proliferation with carbon source availability.


Asunto(s)
Ciclo Celular/fisiología , Glucosa/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Línea Celular , Proliferación Celular , Supervivencia Celular , Senescencia Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Ratones , Fosforilación , Serina/metabolismo , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA